test_memcpy_op.py 7.9 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import op_test
import numpy as np
import unittest
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.backward import append_backward


class TestMemcpy_FillConstant(unittest.TestCase):
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var_name = "tensor@Pinned"
            gpu_var_name = "tensor@GPU"
            pinned_var = main_program.global_block().create_var(
                name=pinned_var_name,
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            gpu_var = main_program.global_block().create_var(
                name=gpu_var_name,
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": gpu_var_name},
                attrs={
                    "shape": [10, 10],
                    "dtype": gpu_var.dtype,
                    "value": 1.0,
                    "place_type": 1
                })
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": pinned_var_name},
                attrs={
                    "shape": [10, 10],
                    "dtype": gpu_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, gpu_var, pinned_var

67
    def test_gpu_copy_to_pinned(self):
J
JZ-LIANG 已提交
68 69 70 71 72
        main_program, gpu_var, pinned_var = self.get_prog()
        main_program.global_block().append_op(
            type='memcpy',
            inputs={'X': gpu_var},
            outputs={'Out': pinned_var},
73
            attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
74 75 76 77 78 79 80 81
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
        self.assertTrue(np.allclose(gpu_, pinned_))
        self.assertTrue(np.allclose(pinned_, np.ones((10, 10))))

82
    def test_pinned_copy_gpu(self):
J
JZ-LIANG 已提交
83 84 85 86 87
        main_program, gpu_var, pinned_var = self.get_prog()
        main_program.global_block().append_op(
            type='memcpy',
            inputs={'X': pinned_var},
            outputs={'Out': gpu_var},
88
            attrs={'dst_place_type': 1})
J
JZ-LIANG 已提交
89 90 91 92 93 94 95 96
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
        self.assertTrue(np.allclose(gpu_, pinned_))
        self.assertTrue(np.allclose(gpu_, np.zeros((10, 10))))

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def test_hip_copy_bool_value(self):
        if core.is_compiled_with_rocm():
            paddle.enable_static()
            main_program = Program()
            with program_guard(main_program):
                pinned_var_name = "tensor@Pinned"
                gpu_var_name = "tensor@GPU"
                pinned_var = main_program.global_block().create_var(
                    name=pinned_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                gpu_var = main_program.global_block().create_var(
                    name=gpu_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": gpu_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": False,
                        "place_type": 1
                    })
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": pinned_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": True,
                        "place_type": 2
                    })

            main_program.global_block().append_op(
                type='memcpy',
                inputs={'X': pinned_var},
                outputs={'Out': gpu_var},
                attrs={'dst_place_type': 1})
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            gpu_, pinned_ = exe.run(main_program,
                                    feed={},
                                    fetch_list=[gpu_var.name, pinned_var.name])
            expect_value = np.array([1]).astype('bool')
            self.assertTrue(np.array_equal(gpu_, expect_value))
        else:
            pass

J
JZ-LIANG 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

class TestMemcpyOPError(unittest.TestCase):
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var = main_program.global_block().create_var(
                name="tensor@Pinned_0",
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": "tensor@Pinned_0"},
                attrs={
                    "shape": [10, 10],
                    "dtype": pinned_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, pinned_var

    def test_SELECTED_ROWS(self):
        main_program, pinned_var = self.get_prog()
        selected_row_var = main_program.global_block().create_var( \
            name="selected_row_0", dtype="float32", persistable=False, \
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS, stop_gradient=True)
        main_program.global_block().append_op(
            type="fill_constant",
            outputs={"Out": selected_row_var},
            attrs={
                "shape": selected_row_var.shape,
                "dtype": selected_row_var.dtype,
                "value": 1.0,
                "place_type": 1
            })
        main_program.global_block().append_op(
            type='memcpy',
            inputs={'X': selected_row_var},
            outputs={'Out': pinned_var},
191
            attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
192 193 194 195 196 197 198 199 200
        with self.assertRaises(NotImplementedError):
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            selected_row_var_, pinned_ = exe.run(
                main_program,
                feed={},
                fetch_list=[selected_row_var.name, pinned_var.name])


201 202 203 204
class TestMemcpyApi(unittest.TestCase):
    def test_api(self):
        a = paddle.ones([1024, 1024])
        b = paddle.tensor.creation._memcpy(a, paddle.CUDAPinnedPlace())
205
        self.assertEqual(b.place.__repr__(), "Place(gpu_pinned)")
206 207 208
        self.assertTrue(np.array_equal(a.numpy(), b.numpy()))


J
JZ-LIANG 已提交
209 210 211
if __name__ == '__main__':
    paddle.enable_static()
    unittest.main()