reducer.cc 44.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18 19 20 21 22 23 24 25 26
#include <iostream>

#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/string/string_helper.h"

#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"

#include "paddle/fluid/imperative/parallel_context.h"

27 28 29
namespace paddle {
namespace imperative {

K
kuizhiqing 已提交
30 31 32
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
    defined(PADDLE_WITH_ASCEND_CL)
33 34 35 36 37 38 39 40 41
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
  framework::Tensor *tensor =
      is_sparse_
          ? sparse_contents_->GetMutable<framework::SelectedRows>()
                ->mutable_value()
          : dense_contents_.GetMutable<framework::LoDTensor>();

  if (platform::is_gpu_place(tensor->place())) {
42
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
43 44
    DivNRanks(tensor, nranks, context);
#endif
K
kuizhiqing 已提交
45 46 47
  } else if (platform::is_npu_place(tensor->place())) {
    // TODO(kuizhiqing)
    VLOG(4) << "divnrank for npu not support yet";
48
  } else if (platform::is_cpu_place(tensor->place())) {
49 50
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
51 52 53 54 55 56
#ifdef PADDLE_WITH_HIP
    if (dtype_ == paddle::framework::proto::VarType_Type_BF16) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Unsupport BF16 in DataParallel for now"));
    }
    framework::VisitDataTypeForHIP(
57 58
        dtype_, DivNRanksForAllReduce<platform::CPUDeviceContext>(
                    tensor, nranks, context));
59 60 61 62 63
#else
    framework::VisitDataType(dtype_,
                             DivNRanksForAllReduce<platform::CPUDeviceContext>(
                                 tensor, nranks, context));
#endif
64
    VLOG(4) << "after div 2" << *tensor;
65 66 67 68 69 70 71
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
  }
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
114
    case framework::proto::VarType::FP16:
115 116
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
117 118
      break;
    case framework::proto::VarType::FP32:
119 120
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
121 122
      break;
    case framework::proto::VarType::FP64:
123 124
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
125 126 127 128 129
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
130
          framework::DataTypeToString(type)));
131 132 133 134
  }
}

// context is used to select the stream for split
135 136 137 138 139 140
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
141
    case framework::proto::VarType::FP16:
142 143
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
144 145
      break;
    case framework::proto::VarType::FP32:
146 147
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
148 149
      break;
    case framework::proto::VarType::FP64:
150 151
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
152 153 154 155 156
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
157 158 159 160
          framework::DataTypeToString(type)));
  }
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
K
kuizhiqing 已提交
215 216 217 218 219 220 221 222 223
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

224 225 226
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
227
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
228 229 230 231 232 233 234
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
235 236 237 238 239 240 241 242 243 244
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
245 246 247 248 249 250 251 252 253 254
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    ConcatTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat npu grads since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
255 256 257 258 259 260 261 262 263 264 265 266 267 268
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
269
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
270 271 272 273 274 275 276
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
277 278 279 280 281 282 283 284 285 286
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
287 288 289 290 291 292 293 294 295 296
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    SplitTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split npu grad since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
297 298 299 300 301 302 303 304
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
305 306 307 308 309
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
310
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

326 327 328
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
329
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
330 331
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
332 333 334
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
335
      parallel_ctx_(parallel_ctx),
336
      group_size_limits_(group_size_limits),
337
      find_unused_vars_each_step_(find_unused_vars) {
338
  VLOG(3) << "Start construct the Reducer ...";
339
  nrings_ = parallel_ctx->GetNRings();
340
  nranks_ = parallel_ctx->GetNRanks();
341 342 343 344
#ifdef PADDLE_WITH_XPU_BKCL
  comm_pool_.reset(new ::ThreadPool(1));
  comm_op_count_ = 0;
#endif
345 346
  // initialize groups
  InitializeGroups(group_indices);
347 348
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
349
    auto var = vars_[global_var_index];
350 351
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
352
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
353
  }
354 355 356 357 358 359

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
360 361
}

362
void Reducer::InitializeDenseGroups(
363 364 365 366 367
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
368
    const auto &var_name = var->Name();
369 370
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
371
                          "Tensor %s's GRAD must be LoDTensor, but received "
372 373 374 375 376 377
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
378
                          "Tensor %s is not initialized.", var_name));
379
    const auto size = lod_tensor->numel();
380 381
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
382
                     "The number of tensor %s's elements is 0.", var_name));
383 384 385 386
    all_length += size;

    p_group->length_.push_back(size);

387 388 389
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

390
    // check the dtype and place, it must be same.
391 392
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
411
  p_group->all_length_ = all_length;
412 413 414 415 416
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
417
// Then specify the actual memory in MarkDenseVarReady.
418 419 420 421 422 423
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
424 425
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
426 427 428 429 430 431 432

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
433
            "The number of group[%d]'s elements is 0.", group_index));
434 435 436 437 438 439 440 441 442 443 444
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
445
      InitializeDenseGroups(variable_indices_, &group);
446 447 448
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
      tensor->Resize(framework::make_ddim({group.all_length_}))
          .mutable_data(place_, group.dtype_);
449
    }
450 451 452

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
453
    for (const auto var_index : variable_indices_) {
454 455 456 457 458 459
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
460
    groups_.emplace_back(std::move(group));
461
    // Debug Message For Reducer
462
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
463 464 465
  }
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
      // py_layer is not supported in DataParallel
      auto begin = grad_pending_node->begin();
      auto end = grad_pending_node->end();
      for (auto op_base = begin; op_base != end; op_base++) {
        PADDLE_ENFORCE_EQ(
            op_base->Type() != "py_layer", true,
            platform::errors::PreconditionNotMet(
                "Note: Currently PyLayer is not supported in DataParallel. For "
                "using PyLayer in a DataParallel model, you can skip gradient "
                "synchronization among multiple cards by 'no_sync', and "
                "manually implement 'all_reduce' before model optimization. "
                "There is an example showing specific implemetation processing "
                "in offical docs: https://www.paddlepaddle.org.cn/documentation"
                "/docs/api/paddle/DataParallel_cn.html"));
      }
503 504 505 506 507 508 509 510 511
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

512
void Reducer::TraverseBackwardGraph(
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
575
}
576

577 578 579 580 581
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  VLOG(3) << "after forward, then reset count for backward.";
582
  grad_need_hooks_ = true;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
      groups_need_finalize_, false,
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
620 621 622 623 624 625 626 627
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
628 629 630
  }

  if (unused_vars_.size() == vars_.size()) {
631 632 633 634 635 636
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
637 638 639 640 641
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
642
// MarkDenseVarReady. Find the position of the corresponding group
643 644 645 646 647
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
648
void Reducer::AddDistHook(size_t var_index) {
649 650 651 652 653 654
  PADDLE_ENFORCE_LT(var_index, variable_locators_.size(),
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
                        variable_locators_.size(), var_index));

655 656 657 658 659
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

660 661 662
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
663

664 665
  local_used_vars_[var_index] = 1;

666
  // rebuild group when find_unused_vars_each_step_ is false
667
  if (NeedRebuildGroup()) {
668 669 670
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
671

672
  if (!has_marked_unused_vars_) {
673 674 675 676 677 678
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

679 680
  MarkVarReady(var_index, true);
}
681

682
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
683 684
  groups_need_finalize_ = true;

685
  const auto &var_locator = variable_locators_[var_index];
686
  const auto group_index = var_locator.group_index;
687
  auto &group = groups_[group_index];
688

689 690 691 692
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
693 694 695
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
        var_index, vars_[var_index]->GradVarBase()->Name());

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, false,
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, true,
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

723 724
  if (!group.is_sparse_) {
    // process dense group
725 726
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
727
    auto &group_tensor = group.dense_tensors_[inside_group_index];
728

729
    if (is_used_var) {
730 731
      auto var_base = vars_[var_index]->GradVarBase();
      auto tensor = var_base->MutableVar()->GetMutable<framework::LoDTensor>();
732 733
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
734
    } else {
735 736
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
737 738 739
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(place_, group.dtype_);
740 741
      }

742
#ifdef PADDLE_WITH_XPU_BKCL
743 744 745 746
      if (platform::is_xpu_place(group_tensor.place())) {
        // TODO(liuyuhui) support XPU set constant
        VLOG(3) << "XPU doesn't support set_constant";
      }
747
#else
748 749 750 751 752
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
        auto tensor =
            var_base->MutableVar()->GetMutable<framework::LoDTensor>();
753 754
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
755 756
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
757 758
        operators::math::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
759
#endif
760 761 762
    }
  } else {
    // process sparse group
763 764 765 766 767 768 769 770 771 772
    PADDLE_ENFORCE_EQ(
        HasGrad(var_index), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
            var_index, vars_[var_index]->Name()));
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
        var_base->Var().IsType<framework::SelectedRows>(), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
            var_index, vars_[var_index]->Name()));

    group.sparse_contents_ = var_base->MutableVar();
789
  }
790

791 792 793 794 795 796 797 798 799 800
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

801 802
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as same as multi gpus card trainging.
803
void Reducer::MarkGroupReady(size_t group_index) {
804 805 806 807 808 809 810 811
  PADDLE_ENFORCE_GE(
      group_index, next_group_,
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
          next_group_, group_index));

812
  if (group_index > next_group_) {
813
    VLOG(3) << "It will adjust the order of group in next batch automatically";
814 815 816 817 818
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
819 820
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
821 822 823 824 825 826 827

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
828 829 830 831 832 833 834 835
#ifdef PADDLE_WITH_XPU_BKCL
    {
      std::lock_guard<std::mutex> lock(mutex_);
      comm_op_count_ += 1;  // lock
    }
    // TODO(liuyuhui): Add try catch to deal with exception later,
    // otherwise the main thread will continue to run when an exception is
    // thrown in comm_pool_.
836 837
    auto next_group = next_group_;
    comm_pool_->enqueue([this, run_order, next_group, &group] {
838
      auto dev_id = place_.device;
839
      platform::SetXPUDeviceId(dev_id);
840
      FusedAllReduceSchedule(run_order, group, next_group);
841 842 843 844
      {
        std::lock_guard<std::mutex> lock(mutex_);
        comm_op_count_ -= 1;  // lock
        cv_.notify_all();
845
      }
846
    });
847
#elif defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) || \
K
kuizhiqing 已提交
848
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL)
849
    FusedAllReduceSchedule(run_order, group, next_group_);
850 851
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
852
        "Not compiled with BKCL or NCCL or GLOO."));
853 854 855 856
#endif
  }
}

857 858 859 860 861
void Reducer::FusedAllReduceSchedule(const int run_order, Group &group,
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
862
  if (group.is_sparse_) {
863 864 865 866 867
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
    parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                     group.sparse_contents_, run_order, false);
868
  } else {
869 870
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
871 872
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
873
    group.ConcatTensors(dev_context);
874

875
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
876 877
// default stream for communicating, so there exist some problems in
// synchronization. And need to add a WaitComm there.
878 879
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as multi gpus card trainging.
880
#ifdef PADDLE_WITH_XPU_BKCL
881 882 883
    if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
      parallel_ctx_->WaitComm(run_order);
    }
884 885
#endif

886
    group.DivNRanks(dev_context, nranks_);
887 888 889
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
890

891
    // Select communication stream to split tensors
892
    // group.dense_contents_ ---> group.dense_tensors
893
    group.SplitTensors(dev_context);
894 895 896
  }
}

897
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
898 899 900 901 902 903 904 905 906
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
907 908 909 910 911 912 913 914 915 916 917 918
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
  auto *global_used_tensor =
      global_used_vars_.GetMutable<framework::LoDTensor>();
  framework::TensorFromVector<int>(local_used_vars_, *dev_ctx,
                                   global_used_tensor);
  parallel_ctx_->AllReduceByStream(global_used_vars_, &global_used_vars_, 0,
                                   true);
  framework::TensorToVector<int>(*global_used_tensor, *dev_ctx,
                                 &local_used_vars_);

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
          dest_var_base->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
969 970 971 972
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

      // 4. set grad tensor
      auto *dest_grad_tensor =
          grad_var_base_tmp->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      TensorCopy(src_tensor, place_, *dev_ctx, dest_grad_tensor);
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
  if (var.IsType<framework::LoDTensor>()) {
    if (var.Get<framework::LoDTensor>().IsInitialized()) {
      return true;
    }
  } else if (var.IsType<framework::SelectedRows>()) {
    if (var.Get<framework::SelectedRows>().value().IsInitialized()) {
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

1006
void Reducer::FinalizeBackward() {
1007
  groups_need_finalize_ = false;
1008
  grad_need_hooks_ = false;
1009 1010 1011 1012 1013 1014
#ifdef PADDLE_WITH_XPU_BKCL
  {
    std::unique_lock<std::mutex> lock(mutex_);
    cv_.wait(lock, [&] { return comm_op_count_ == 0; });
  }
#endif
1015

1016 1017
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
1018
    parallel_ctx_->WaitComm(i);
1019 1020
  }

1021
  if (NeedRebuildGroup()) {
1022 1023 1024 1025 1026
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
1027

1028
  if (find_unused_vars_each_step_) {
1029
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
1030
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
K
kuizhiqing 已提交
1031
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL)
1032 1033 1034 1035 1036 1037 1038 1039 1040
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1053 1054
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1055 1056 1057 1058 1059
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1089 1090 1091 1092 1093 1094 1095

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1096
      // we keep sparse var a single group
1097
      res.push_back({tensor_real_index});
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1114
    group_info.first.push_back(tensor_real_index);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1145 1146 1147 1148 1149 1150
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1151 1152 1153 1154 1155 1156
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle