cross_entropy.cu 3.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/cross_entropy.h"
16
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
18 19 20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

namespace {
template <typename T>
25
__global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label,
26 27
                                   const int N, const int D,
                                   const int ignore_index) {
28 29
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
30 31 32 33
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D || label[i] == ignore_index);
    Y[i] = ignore_index == label[i]
               ? 0
               : -math::TolerableValue<T>()(log(X[i * D + label[i]]));
34 35 36 37 38 39 40
  }
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
  int tid = threadIdx.x;
41
  T val = 0;
42

43 44 45
  int idx = blockIdx.x * class_num + tid;
  int end = blockIdx.x * class_num + class_num;
  for (; idx < end; idx += blockDim.x) {
46
    val += math::TolerableValue<T>()(std::log(X[idx])) * label[idx];
47 48
  }

49 50 51
  val = paddle::platform::reduceSum(val, tid, blockDim.x);
  if (threadIdx.x == 0) {
    Y[blockIdx.x] = -val;
52 53 54 55 56 57 58
  }
}
}  // namespace

using Tensor = framework::Tensor;

template <typename T>
Q
QI JUN 已提交
59
class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
60
 public:
Q
QI JUN 已提交
61 62
  void operator()(const platform::CUDADeviceContext& ctx,
                  framework::Tensor* out, const framework::Tensor* prob,
63 64
                  const framework::Tensor* labels, bool softLabel,
                  const int ignore_index) {
65 66 67 68 69 70 71 72
    const T* prob_data = prob->data<T>();
    T* loss_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = prob->dims()[0];
    int class_num = prob->dims()[1];

    if (softLabel) {
      const T* label_data = labels->data<T>();
73 74 75
      int block = class_num > 512
                      ? 512
                      : pow(2, static_cast<int>(std::log2(class_num)));
76

77
      SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>(
Q
qijun 已提交
78
          loss_data, prob_data, label_data, class_num);
79
    } else {
80
      const int64_t* label_data = labels->data<int64_t>();
81 82
      int block = 512;
      int grid = (batch_size + block - 1) / block;
Q
QI JUN 已提交
83
      CrossEntropyKernel<T><<<grid, block, 0, ctx.stream()>>>(
84 85
          loss_data, prob_data, label_data, batch_size, class_num,
          ignore_index);
86 87 88 89
    }
  }
};

Q
QI JUN 已提交
90 91
template class CrossEntropyFunctor<platform::CUDADeviceContext, float>;
template class CrossEntropyFunctor<platform::CUDADeviceContext, double>;
92 93 94
}  // namespace math
}  // namespace operators
}  // namespace paddle