selected_rows_functor.cc 35.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

17
#include "paddle/fluid/framework/mixed_vector.h"
18
#include "paddle/fluid/platform/device/device_wrapper.h"
19

L
lidanqing 已提交
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

24 25 26 27
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
28 29
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
30 31
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
32
    auto in1_height = input1.height();
33 34 35
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
36
                                          "But received first input height  = "
37 38
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
56 57 58 59
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
60
            "But received first input width = [%d], second input width = [%d]",
61 62 63 64 65
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
66
            "But received input width = [%d], output width = [%d]",
67
            in1_row_numel, out_value->numel() / out_rows.size()));
68 69

    auto in1_place = input1.place();
70 71
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
72
                          "The running environment is not on the CPU place."));
73
    auto in2_place = input2.place();
74 75
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
76
                          "The running environment is not on the CPU place."));
77
    auto out_place = context.GetPlace();
78 79
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
80
                          "The running environment is not on the CPU place."));
81 82 83

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
84
    memory::Copy(out_place, out_data, in1_place, in1_data,
85 86 87
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
88
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
89 90 91 92
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
93 94
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
95 96

template <typename T>
Q
QI JUN 已提交
97 98
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
99
                  const phi::SelectedRows& input1,
100 101
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
102 103
    const auto& in2_dims = input2.dims();
    const auto& out_dims = output->dims();
104 105 106
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
107
                                          "But received first input height = "
108 109 110 111 112 113
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
114
            "But received input height = [%d], output height = [%d]",
115
            in1_height, out_dims[0]));
116 117 118 119 120

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
121 122 123 124
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
125
            "But received first input width = [%d], second input width = [%d]",
126 127 128 129 130
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
131
            "But received input width = [%d], output width = [%d]",
132
            in1_row_numel, output->numel() / in1_height));
133

134
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
149
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
150 151 152
  }
};

Q
QI JUN 已提交
153 154
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
155 156

template <typename T>
Q
QI JUN 已提交
157 158
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
159 160
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
161
    auto in1_height = input1.height();
162 163 164
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
165
                                          "But received first input height = "
166 167
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
168 169 170 171 172 173 174 175

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
176 177
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
    mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
178 179

    auto in1_place = input1.place();
180 181
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
182
                          "The running environment is not on the CPU place."));
Q
QI JUN 已提交
183
    auto in2_place = input2->place();
184 185
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
186
                          "The running environment is not on the CPU place."));
Q
QI JUN 已提交
187 188 189

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
190
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
191 192 193 194
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
195 196 197 198
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
199

M
minqiyang 已提交
200 201 202
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
203
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
204
                  const std::vector<int64_t>& input2_offsets,
205
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
206 207 208 209 210 211
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
212 213 214
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
215
                            "But received first input height = [%d], second "
216 217
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
218 219 220 221 222 223 224 225 226 227 228 229
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
230
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
244
template <typename T>
Q
QI JUN 已提交
245 246
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
247
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
248
    if (UNLIKELY(input1.rows().size() == 0)) {
249 250 251
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
252
    auto in1_height = input1.height();
253
    const auto& in2_dims = input2->dims();
254 255 256
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
257
                                          "But received first input height = "
258 259
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
260 261 262 263 264

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
265 266 267 268
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
269
            "But received first input width = [%d], second input width = [%d]",
270
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

H
hong 已提交
284 285 286 287 288 289 290 291 292
template <typename T>
struct SelectedRowsAddToTensor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
    if (UNLIKELY(input1.rows().size() == 0)) {
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
    auto in1_height = input1.height();
293
    const auto& in2_dims = input2->dims();
H
hong 已提交
294 295 296
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
297
                                          "But received first input height = "
H
hong 已提交
298 299 300 301 302 303 304 305 306 307 308
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
309
            "But received first input width = [%d], second input width = [%d]",
H
hong 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323
            in1_row_numel, input2->numel() / in1_height));

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
324 325 326 327
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
328 329
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
330

H
hong 已提交
331 332 333 334 335
template struct SelectedRowsAddToTensor<phi::CPUContext, float>;
template struct SelectedRowsAddToTensor<phi::CPUContext, double>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int64_t>;
template struct SelectedRowsAddToTensor<phi::CPUContext, platform::bfloat16>;
T
typhoonzero 已提交
336 337 338 339 340 341 342 343
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

344
template <typename T, typename DeviceContext>
345
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
346 347
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
348
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
349 350
}

351
template <typename T, typename DeviceContext>
352
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
353 354
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
355
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
356 357
    out[i] += in[i];
  }
T
typhoonzero 已提交
358 359
}

360
template <typename T, typename DeviceContext>
361
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
362
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
363
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
364 365
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
366
#ifndef PADDLE_WITH_MKLDNN
367
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
386 387 388
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
389 390 391 392 393
    }
#endif
  }
}

394
template <typename T, typename DeviceContext>
395
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
396
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
397
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
398 399
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
400
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
401
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
402 403 404 405 406 407 408 409 410
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
411 412 413
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
414 415 416 417
    }
  }
}

418 419 420
template <typename DeviceContext, typename T>
struct MergeAddImpl {
  phi::SelectedRows operator()(const DeviceContext& context,
421 422 423
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
424
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
425 426 427
    return out;
  }

428 429
  void operator()(const DeviceContext& context, const phi::SelectedRows& input,
                  phi::SelectedRows* output, const bool sorted_result = false) {
430
    std::vector<const phi::SelectedRows*> inputs;
431
    inputs.push_back(&input);
432
    (*this)(context, inputs, output, sorted_result);
433
  }
T
typhoonzero 已提交
434

435
  void operator()(const DeviceContext& context,
436 437
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
438
    if (inputs.size() == 0) {
M
minqiyang 已提交
439
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
440 441
      return;
    }
442
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
443
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
444
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
445 446 447 448 449
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
450
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
451 452 453 454
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
455
    phi::SelectedRows& out = *output;
456
    std::set<int64_t> merged_row_set;
457
    size_t row_num = 0;
458
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
459
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
460 461
        continue;
      }
462
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
463 464 465
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
466
      PADDLE_ENFORCE_EQ(input_height, input->height(),
467 468
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
469
      row_num += input->rows().size();
470 471
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
472

473
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
474
    out.mutable_value()->mutable_data<T>(
475
        phi::make_ddim(
476
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
477
        context.GetPlace());
478
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
495
        auto in_numel = in->rows().size() * input_width;
496
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
497 498 499 500 501 502
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
503

504 505 506
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
507

508 509
      out.set_rows(merge_rows);

510
      phi::funcs::SetConstant<DeviceContext, T> constant_functor;
511
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
512 513 514 515

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
516
      }
517

518 519
      add_sparse_inputs<T, DeviceContext>(inputs, rows_to_id, input_width,
                                          context, out_data);
T
typhoonzero 已提交
520
    }
T
wip  
typhoonzero 已提交
521 522 523
  }
};

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<platform::CPUDeviceContext, T>()(context, input,
                                                         sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, input, output,
                                                  sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, inputs, output,
                                                  sorted_result);
  }
};

template <typename T>
struct MergeAdd<phi::CPUContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const phi::CPUContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<phi::CPUContext, T>()(context, input, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, input, output, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, inputs, output, sorted_result);
  }
};

#define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype)               \
  template struct MergeAddImpl<platform::CPUDeviceContext, dtype>; \
  template struct MergeAddImpl<phi::CPUContext, dtype>;            \
  template struct MergeAdd<platform::CPUDeviceContext, dtype>;     \
  template struct MergeAdd<phi::CPUContext, dtype>;

TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::bfloat16)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<float>)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)

587 588 589
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
590 591 592 593
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
594 595 596 597 598
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
599
                  const phi::SelectedRows& input, phi::SelectedRows* output,
600 601 602 603 604 605
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

606
    phi::SelectedRows& out = *output;
607 608 609 610 611 612 613
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
614
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
615 616 617 618 619 620 621
        context.GetPlace());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

622 623 624 625
    auto* y_data = out.mutable_value()->data<T>();
    auto* x_data = input.value().data<T>();
    int xm = input_rows.size();
    int ym = merge_rows.size();
626
    int n = input_width;
627 628 629 630 631 632 633 634 635 636 637 638

    xpu::ctx_guard RAII_GUARD(context.x_context());
    int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
    int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
    memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                 merge_rows.data(), ym * sizeof(int64_t));
    memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                 input_rows.data(), xm * sizeof(int64_t));
    int r =
        xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                        x_rows_data, y_rows_data, xm, n, ym);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
639 640 641
  }

  void operator()(const platform::XPUDeviceContext& context,
642 643
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
644 645 646 647
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
648
    const phi::SelectedRows* has_value_input = nullptr;
649 650 651 652 653 654 655 656 657 658 659 660
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
661
    phi::SelectedRows& out = *output;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
689
        phi::make_ddim(
690 691 692
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

693
    float* y_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());
694 695 696 697 698 699 700 701 702 703 704 705

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

706 707 708
      auto* x_data = input->value().data<T>();
      int xm = input_rows.size();
      int ym = merge_rows.size();
709
      int n = input_width;
710 711 712 713 714 715 716 717 718 719 720 721

      xpu::ctx_guard RAII_GUARD(context.x_context());
      int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
      int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
      memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                   merge_rows.data(), ym * sizeof(int64_t));
      memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                   input_rows.data(), xm * sizeof(int64_t));
      int r =
          xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                          x_rows_data, y_rows_data, xm, n, ym);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
722 723 724 725 726
    }
  }
};

#endif
727 728
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
729 730 731
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
732 733 734 735 736
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
737 738
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
739 740 741 742 743
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
744 745
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
746 747 748 749
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
750
    const phi::SelectedRows* has_value_input = nullptr;
751 752 753 754 755 756 757 758 759 760 761 762
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
763
    phi::SelectedRows& out = *output;
764 765 766 767 768 769 770
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
771 772 773
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
774
      PADDLE_ENFORCE_EQ(input_height, input->height(),
775 776
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
777 778 779 780 781 782
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
783
        phi::make_ddim(
784 785 786 787 788 789 790 791 792 793
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

794
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
795 796 797 798 799 800 801
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

802
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
803 804 805 806 807 808 809 810 811
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
812 813 814
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
815 816 817 818 819 820 821 822 823 824 825 826
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

827 828 829 830
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

831 832 833 834 835
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
836 837
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
838
  void operator()(const platform::CPUDeviceContext& context,
839
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
840
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
841
    auto in1_height = input1.height();
842
    const auto& in2_dims = input2->dims();
843 844 845
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
846
                                          "But received first input height = "
847 848
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
849 850 851 852 853

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
854 855 856 857
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
858
            "But received first input width = [%d], second input width = [%d]",
859
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
904 905 906 907
  }
};

}  // namespace scatter
908 909 910
}  // namespace math
}  // namespace operators
}  // namespace paddle