fusion_conv_inception_op.cu 12.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
17
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
18 19 20 21

namespace paddle {
namespace operators {

22
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
62
    std::vector<int> in_dim = phi::vectorize<int>(input->dims());
Q
qingqing01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

83
    cudnnTensorDescriptor_t cudnn_input_desc =
84 85 86
        input_desc.descriptor<T>(layout, phi::vectorize<int>(input->dims()));
    cudnnTensorDescriptor_t pool_out_desc =
        out_pool_desc.descriptor<T>(layout, phi::vectorize<int>(input->dims()));
Q
qingqing01 已提交
87 88 89 90 91 92 93 94 95

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
96
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
97
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
98
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
99
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
100
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
101
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
102
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
103
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
104
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
127
      filter_dims.push_back(phi::vectorize<int>(filters[i]->dims()));
128
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
Q
qingqing01 已提交
129 130 131
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
132
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
133 134 135 136 137 138 139 140
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
141
        PADDLE_ENFORCE_GPU_SUCCESS(
142 143 144
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
145
      } else {
146
        PADDLE_ENFORCE_GPU_SUCCESS(
147 148 149
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
150
      }
151 152
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          conv_desc[i], CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
153
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
154
      if (!platform::allow_tf32_cudnn) {
155
        PADDLE_ENFORCE_GPU_SUCCESS(
A
AshburnLee 已提交
156 157 158
            platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                           CUDNN_FMA_MATH));
      }
A
AshburnLee 已提交
159
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
160 161 162 163 164
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
165
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
166 167 168 169 170 171
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

172
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
173 174
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
175
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
176 177 178 179 180
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
181
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
182
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
183
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
184 185
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
186 187 188 189 190 191

      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
192
      PADDLE_ENFORCE_GPU_SUCCESS(
193
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
194
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
195 196 197
              kNUM_CUDNN_FWD_ALGS, &perf_count, perf_results.get()));
      algo[i] = (perf_results.get())[best_algo_idx].algo;

198
      PADDLE_ENFORCE_GPU_SUCCESS(
199 200 201
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              algo[i], &tmp_size));
202

Q
qingqing01 已提交
203 204 205 206 207 208 209 210 211 212 213 214
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
215
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnPoolingForward(
Q
qingqing01 已提交
216 217 218 219 220 221 222 223
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
224
    T* temp2_data = temp_outs[1]->mutable_data<T>(phi::make_ddim(out_dims[2]),
225
                                                  ctx.GetPlace());
Q
qingqing01 已提交
226 227 228 229 230 231 232 233 234 235
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
236
      auto func = [&](void* cudnn_workspace) {
237
        PADDLE_ENFORCE_GPU_SUCCESS(
238 239 240 241 242 243 244
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
                static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
                algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
                out_desc[i], out_datas[i], bias_desc[i],
                static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
                out_desc[i], out_datas[i]));
C
chengduo 已提交
245 246 247
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
248 249 250 251
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
252
    PADDLE_ENFORCE_GPU_SUCCESS(
253
        platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
254
    PADDLE_ENFORCE_GPU_SUCCESS(
255
        platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
256
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
257
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
258
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
259
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
260
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnTransformTensor(
Q
qingqing01 已提交
261 262 263 264 265
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
266
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
267
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
268
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
269
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
270
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
271
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
272
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
273
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
274
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
275 276
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
277
    PADDLE_ENFORCE_GPU_SUCCESS(
278
        platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
279
    PADDLE_ENFORCE_GPU_SUCCESS(
280
        platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
Q
qingqing01 已提交
281 282 283 284 285 286 287
  }
};
#endif

}  // namespace operators
}  // namespace paddle

288
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
289 290 291 292 293
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif