benchmark_utils.cc 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h"

#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>

// Eager
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

// Eager Generated
31
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
32 33 34 35 36 37 38 39
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"

// Fluid
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

40
static size_t max_num_benchmark_runs = 4000;
41 42 43 44 45 46

namespace egr {

/* --------------------- */
/* ---- Eager Scale ---- */
/* --------------------- */
47 48 49
void benchmark_eager_scale(const paddle::experimental::Tensor& tensor,
                           bool accuracy_check) {
  paddle::experimental::Tensor input_tensor = tensor;
50 51 52 53 54 55 56 57 58 59
  float scale = 2.0;
  float bias = 3.0;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor =
        egr::scale(input_tensor, scale, bias, true /*bias_after_scale*/,
                   true /*trace_backward*/);
  }

60
  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor};
61
  Backward(target_tensors, {});
62 63 64

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 10)
65
    eager_test::CompareTensorWithValue<float>(input_tensor, 8189.0);
66
    // Examine Backward Grad (w.r.t max_num_runs = 10)
67
    eager_test::CompareGradTensorWithValue<float>(tensor, 1024.0);
68 69 70
  }
}

71 72 73 74 75 76 77 78 79 80 81 82
void benchmark_eager_matmul(const paddle::experimental::Tensor& X,
                            const paddle::experimental::Tensor& Y,
                            bool accuracy_check) {
  paddle::experimental::Tensor input_tensor0 = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor0 =
        matmul_final_state_dygraph_function(input_tensor0, Y, false, false);
  }

  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
83
  Backward(target_tensors, {});
84 85 86 87 88 89 90 91 92 93

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 2)
    eager_test::CompareTensorWithValue<float>(input_tensor0, 16);
    // Examine Backward Grad (w.r.t max_num_runs = 2)
    eager_test::CompareGradTensorWithValue<float>(X, 16);
    eager_test::CompareGradTensorWithValue<float>(Y, 16);
  }
}

94 95 96
/* ----------------------------------- */
/* ---- Eager Intermediate Matmul ---- */
/* ----------------------------------- */
97 98
void benchmark_eager_intermediate_matmul(const paddle::experimental::Tensor& X,
                                         const paddle::experimental::Tensor& Y,
99
                                         bool accuracy_check) {
100
  paddle::experimental::Tensor input_tensor0 = X;
101 102 103 104 105 106 107

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor0 = matmul_v2_dygraph_function(
        input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}});
  }

108
  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
109
  Backward(target_tensors, {});
110 111 112

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 2)
113
    eager_test::CompareTensorWithValue<float>(input_tensor0, 16);
114
    // Examine Backward Grad (w.r.t max_num_runs = 2)
115 116
    eager_test::CompareGradTensorWithValue<float>(X, 16);
    eager_test::CompareGradTensorWithValue<float>(Y, 16);
117 118 119 120 121 122
  }
}

/* -------------------------------- */
/* ---- Eager Intermediate MLP ---- */
/* -------------------------------- */
123 124 125 126 127
void benchmark_eager_intermediate_mlp(
    const paddle::experimental::Tensor& X,
    const std::vector<paddle::experimental::Tensor>& Ws,
    const std::vector<paddle::experimental::Tensor>& Bs, bool accuracy_check) {
  paddle::experimental::Tensor input0 = X;
128 129

  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
130
    paddle::experimental::Tensor Out = matmul_v2_dygraph_function(
131 132 133 134 135
        input0, Ws[i], {{"trans_x", false}, {"trans_y", false}});

    input0 = elementwise_add_dygraph_function(Out, Bs[i], {});
  }

136 137
  paddle::experimental::Tensor Out =
      reduce_sum_dygraph_function(input0, {{"reduce_all", true}});
138

139
  std::vector<paddle::experimental::Tensor> target_tensors = {Out};
140
  Backward(target_tensors, {});
141 142 143 144 145 146

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        compute_mlp_expected_results();

    // Examine Forward Grad (w.r.t max_num_runs = 2)
147
    eager_test::CompareTensorWithValue<float>(Out, result["Out"]);
148 149

    // Examine Backward Grad (w.r.t max_num_runs = 2)
150 151
    eager_test::CompareGradTensorWithValue<float>(X, result["GradX"]);
    eager_test::CompareGradTensorWithValue<float>(Ws[0], result["GradW"]);
152 153 154 155 156 157 158 159 160 161 162 163 164 165
  }
}

}  // namespace egr

namespace paddle {
namespace imperative {

static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X,
                                  const paddle::platform::Place& place,
                                  float value) {
  auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>();
  float* t_ptr = tensor->mutable_data<float>(place);
  std::vector<float> host_data(tensor->numel());
166 167

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
168 169 170 171 172 173 174 175 176 177 178 179
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
    auto* dev_ctx =
        dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
    auto stream = dev_ctx->stream();

    paddle::memory::Copy(paddle::platform::CPUPlace(), host_data.data(),
                         paddle::platform::CUDAPlace(), t_ptr,
                         sizeof(float) * tensor->numel(), stream);
    t_ptr = host_data.data();
  }
180 181
#endif

182 183 184 185 186 187 188 189 190 191 192 193 194
  VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      t_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, t_ptr[0]));
}

static void FluidCheckGradTensorValue(
    const std::shared_ptr<imperative::VarBase>& X,
    const paddle::platform::Place& place, float value) {
  auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>();
  float* g_ptr = grad_tensor->mutable_data<float>(place);
  std::vector<float> g_host_data(grad_tensor->numel());
195 196

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
197 198 199 200 201 202 203 204 205 206 207 208
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
    auto* dev_ctx =
        dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
    auto stream = dev_ctx->stream();

    paddle::memory::Copy(paddle::platform::CPUPlace(), g_host_data.data(),
                         paddle::platform::CUDAPlace(), g_ptr,
                         sizeof(float) * grad_tensor->numel(), stream);
    g_ptr = g_host_data.data();
  }
209 210
#endif

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      g_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, g_ptr[0]));
}

/* --------------------- */
/* ---- Fluid Scale ---- */
/* --------------------- */
// TODO(jiabin): Change this and remove nolint
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X,
                           const paddle::platform::Place& place,
                           bool accuracy_check) {
  imperative::Tracer tracer;
  framework::AttributeMap attrs;

  attrs["use_mkldnn"] = false;
  attrs["scale"] = 2;
  attrs["bias"] = 3;
  attrs["bias_after_scale"] = true;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
243
    tracer.TraceOp<VarBase>("scale", ins, outs, attrs, place, true);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 8189.0);
    FluidCheckGradTensorValue(X, place, 1024.0);
  }
}

/* ---------------------- */
/* ---- Fluid Matmul ---- */
/* ---------------------- */
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X,
                            const std::shared_ptr<imperative::VarBase>& Y,
                            const paddle::platform::Place& place,
                            bool accuracy_check) {
  imperative::Tracer tracer;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    framework::AttributeMap attrs;
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
279
    tracer.TraceOp<VarBase>("matmul_v2", ins, outs, attrs, place, true);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 16);
    FluidCheckGradTensorValue(X, place, 16);
    FluidCheckGradTensorValue(Y, place, 16);
  }
}

/* ------------------- */
/* ---- Fluid MLP ---- */
/* ------------------- */
void benchmark_fluid_mlp(
    const std::shared_ptr<imperative::VarBase>& X,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Ws,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Bs,
    const paddle::platform::Place& place, bool accuracy_check) {
  imperative::Tracer tracer;

  imperative::NameVarBaseMap ins;
  imperative::NameVarBaseMap outs;
  framework::AttributeMap attrs;
  std::shared_ptr<imperative::VarBase> input0 = X;
  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
    // Matmul0
    ins = {{"X", {input0}}, {"Y", {Ws[0]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
317
    tracer.TraceOp<VarBase>("matmul_v2", ins, outs, attrs, place, true);
318 319 320 321 322 323 324

    // EW-Add0
    ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
325
    tracer.TraceOp<VarBase>("elementwise_add", ins, outs, attrs, place, true);
326 327 328 329 330 331 332 333 334 335
    input0 = outs["Out"][0];
  }

  // ReduceSum
  ins = {{"X", {input0}}};
  outs = {{"Out",
           {std::shared_ptr<imperative::VarBase>(
               new imperative::VarBase(true, "Out"))}}};
  attrs = {{"reduce_all", true}};

J
Jiabin Yang 已提交
336
  tracer.TraceOp<VarBase>("reduce_sum", ins, outs, attrs, place, true);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        egr::compute_mlp_expected_results();

    FluidCheckTensorValue(outs["Out"][0], place, result["Out"]);
    FluidCheckGradTensorValue(X, place, result["GradX"]);
    FluidCheckGradTensorValue(Ws[0], place, result["GradW"]);
  }
}

}  // namespace imperative
}  // namespace paddle