test_lrn_op.py 2.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
gongweibao 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
G
gongweibao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


class TestLRNOp(OpTest):
    def get_input(self):
        ''' TODO(gongweibao): why it's grad diff is so large?
        x = np.ndarray(
            shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
        for m in range(0, self.N):
            for i in range(0, self.C):
                for h in range(0, self.H):
                    for w in range(0, self.W):
                        x[m][i][h][w] = m * self.C * self.H * self.W +  \
                                        i * self.H * self.W +  \
                                        h * self.W + w + 1
        '''
        x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
        return x + 1

    def get_out(self):
M
minqiyang 已提交
37
        start = -(self.n - 1) // 2
G
gongweibao 已提交
38 39
        end = start + self.n

40
        mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32")
G
gongweibao 已提交
41 42 43
        mid.fill(self.k)
        for m in range(0, self.N):
            for i in range(0, self.C):
Q
qingqing01 已提交
44
                for c in range(start, end):
G
gongweibao 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                    ch = i + c
                    if ch < 0 or ch >= self.C:
                        continue

                    s = mid[m][i][:][:]
                    r = self.x[m][ch][:][:]
                    s += np.square(r) * self.alpha

        mid2 = np.power(mid, -self.beta)
        return np.multiply(self.x, mid2), mid

    def get_attrs(self):
        attrs = {
            'n': self.n,
            'k': self.k,
            'alpha': self.alpha,
            'beta': self.beta
        }
        return attrs

    def setUp(self):
        self.op_type = "lrn"
        self.N = 2
        self.C = 3
        self.H = 5
        self.W = 5

        self.n = 5
        self.k = 2.0
        self.alpha = 0.0001
        self.beta = 0.75
        self.x = self.get_input()
        self.out, self.mid_out = self.get_out()

        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
        self.attrs = self.get_attrs()

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.01)


if __name__ == "__main__":
    unittest.main()