p_norm_op.cu 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
16
#ifdef __NVCC__
17
#include "cub/cub.cuh"
18 19 20 21 22
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
G
Guoxia Wang 已提交
23
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
24
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
N
Noel 已提交
25
#include "paddle/fluid/operators/fc_op.h"
26
#include "paddle/fluid/operators/p_norm_op.h"
27 28
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
G
Guoxia Wang 已提交
29
#include "paddle/fluid/platform/float16.h"
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

G
Guoxia Wang 已提交
39 40 41
__device__ __forceinline__ platform::float16 inline_abs(platform::float16 x) {
  return static_cast<platform::float16>(abs(static_cast<float>(x)));
}
42 43 44
__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

G
Guoxia Wang 已提交
45 46 47
__device__ __forceinline__ int inline_sign(platform::float16 x) {
  return sgn<platform::float16>(x);
}
48 49 50
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

G
Guoxia Wang 已提交
51 52 53 54 55
__device__ __forceinline__ platform::float16 inline_pow(
    platform::float16 base, platform::float16 exponent) {
  return static_cast<platform::float16>(
      pow(static_cast<float>(base), static_cast<float>(exponent)));
}
56 57 58 59 60 61 62
__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

63
template <typename T>
64 65
struct NonzeroFunctor {
  HOSTDEVICE explicit inline NonzeroFunctor() {}
66
  HOSTDEVICE inline T operator()(const T x) const {
67
    return static_cast<T>(static_cast<double>(x) != 0);
68
  }
69
};
70

71
template <typename T>
72 73
struct AbsFunctor {
  HOSTDEVICE explicit inline AbsFunctor() {}
74
  HOSTDEVICE inline T operator()(const T x) const {
75
    return static_cast<T>(inline_abs(x));
76
  }
77
};
78

79 80 81 82
template <typename Tx, typename Ty = Tx>
struct UnsignedPowFunctor {
  HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) {
    this->porder = porder;
83
  }
84
  HOSTDEVICE inline Ty operator()(const Tx x) const {
85 86 87 88 89 90 91 92
    return static_cast<Ty>(inline_pow(inline_abs(x), static_cast<Tx>(porder)));
  }
  float porder;
};

template <typename Tx, typename Ty = Tx>
struct PowFunctor {
  HOSTDEVICE explicit inline PowFunctor(float porder) { this->porder = porder; }
93
  HOSTDEVICE inline Ty operator()(const Tx x) const {
94 95 96 97 98
    return static_cast<Ty>(inline_pow(x, static_cast<Tx>(porder)));
  }
  float porder;
};

99 100 101 102 103 104 105 106 107 108 109
template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());
    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    float porder = ctx.Attr<float>("porder");
N
Noel 已提交
110
    bool asvector = ctx.Attr<bool>("asvector");
111
    int axis = ctx.Attr<int>("axis");
112
    std::vector<int> reduce_axis = {axis};
N
Noel 已提交
113
    reduce_axis = GetReduceDim(reduce_axis, xdim.size(), asvector);
114

115
    auto stream = ctx.cuda_device_context().stream();
116

117
    using MT = typename details::MPTypeTrait<T>::Type;
118
    if (porder == 0) {
119 120
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, NonzeroFunctor<T>>(
          *in_x, out_norm, NonzeroFunctor<T>(), reduce_axis, stream);
121
    } else if (porder == INFINITY) {
122 123
      TensorReduceFunctorImpl<T, T, kps::MaxFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
124
    } else if (porder == -INFINITY) {
125 126
      TensorReduceFunctorImpl<T, T, kps::MinFunctor, AbsFunctor<T>>(
          *in_x, out_norm, AbsFunctor<T>(), reduce_axis, stream);
127
    } else {
128 129 130 131 132 133 134 135 136 137 138 139 140
      framework::Tensor tmp_x;
      tmp_x.mutable_data<T>(xdim, ctx.GetPlace());
      std::vector<const framework::Tensor*> ins = {in_x};
      std::vector<framework::Tensor*> outs = {&tmp_x};
      auto func = UnsignedPowFunctor<MT, T>(porder);
      const auto& cuda_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();

      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, MT, T,
                                          UnsignedPowFunctor<MT, T>>(
          cuda_ctx, ins, &outs, func);
      framework::Tensor tmp_y;
      tmp_y.mutable_data<T>(ndim, ctx.GetPlace());
141 142
      TensorReduceFunctorImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
          tmp_x, &tmp_y, kps::IdentityFunctor<T>(), reduce_axis, stream);
143 144 145 146 147 148 149 150
      const framework::Tensor* tmp_norm = &tmp_y;
      ins = {tmp_norm};
      outs = {out_norm};
      auto func_inverse = UnsignedPowFunctor<MT, T>(1. / porder);

      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, MT, T,
                                          UnsignedPowFunctor<MT, T>>(
          cuda_ctx, ins, &outs, func_inverse);
151
    }
152 153 154
  }
};

155 156 157 158 159 160 161 162 163 164 165 166 167
template <typename T>
struct AbsMaxAndMinGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
    auto equals = ((*x).abs() == y->broadcast(dim));
    auto ones = dx->constant(static_cast<T>(1.));
    auto negs = dx->constant(static_cast<T>(-1.));
    auto zeros = dx->constant(static_cast<T>(0.));
    auto positives = (*x) > zeros;
    dx->device(place) = dy->broadcast(dim) * equals.select(ones, zeros) *
                        positives.select(ones, negs);
168
  }
169
};
170

171 172 173 174 175 176 177 178 179 180 181 182
template <typename T>
struct PNormPostGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
    auto ones = dx->constant(static_cast<T>(1.));
    auto negs = dx->constant(static_cast<T>(-1.));
    auto zeros = dx->constant(static_cast<T>(0.));
    auto positives = (*x) > zeros;
    dx->device(place) = (*dx) * dy->broadcast(dim) * y->broadcast(dim) *
                        positives.select(ones, negs);
183
  }
184
};
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
N
Noel 已提交
200
    bool reduce_all = (in_norm->numel() == 1);
201
    if (axis < 0) axis = xdim.size() + axis;
202
    const std::vector<int> dims = {axis};
203

204
    auto& cuda_ctx = ctx.template device_context<DeviceContext>();
205

206 207
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
208
      set_zero(cuda_ctx, out_dx, static_cast<T>(0));
209
    } else if (porder == INFINITY || porder == -INFINITY) {
210 211
      LaunchReduceGradKernel<DeviceContext, T, AbsMaxAndMinGradFunctor<T>>(
          ctx, in_x, in_norm, in_norm_dy, out_dx, dims, reduce_all);
212
    } else {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      framework::Tensor tmp_norm;
      tmp_norm.mutable_data<T>(in_norm->dims(), ctx.GetPlace());
      std::vector<const framework::Tensor*> ins = {in_norm};
      std::vector<framework::Tensor*> outs = {&tmp_norm};
      auto pow_functor = PowFunctor<T>(1. - porder);
      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T,
                                          PowFunctor<T>>(cuda_ctx, ins, &outs,
                                                         pow_functor);
      ins = {in_x};
      outs = {out_dx};
      auto unsigned_pow = UnsignedPowFunctor<T>(porder - 1.);
      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T,
                                          UnsignedPowFunctor<T>>(
          cuda_ctx, ins, &outs, unsigned_pow);
      const framework::Tensor* tmp_norm_const = &tmp_norm;
      LaunchReduceGradKernel<DeviceContext, T, PNormPostGradFunctor<T>>(
          ctx, in_x, tmp_norm_const, in_norm_dy, out_dx, dims, reduce_all);
230
    }
231 232 233 234 235 236 237 238 239
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

G
Guoxia Wang 已提交
240 241 242
REGISTER_OP_CUDA_KERNEL(p_norm,
                        ops::PnormCUDAKernel<CUDA, paddle::platform::float16>,
                        ops::PnormCUDAKernel<CUDA, float>,
243
                        ops::PnormCUDAKernel<CUDA, double>);
G
Guoxia Wang 已提交
244 245 246 247
REGISTER_OP_CUDA_KERNEL(
    p_norm_grad, ops::PnormGradCUDAKernel<CUDA, paddle::platform::float16>,
    ops::PnormGradCUDAKernel<CUDA, float>,
    ops::PnormGradCUDAKernel<CUDA, double>);