engine.cc 16.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22
#include "paddle/fluid/inference/tensorrt/helper.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31
int TensorRTEngine::runtime_batch_ = 1;

32 33 34 35 36
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
37
    infer_network_.reset(infer_builder_->createNetworkV2(
38 39 40
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
41
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
42
  }
43 44

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
45 46 47 48
  // optim_profile_ = infer_builder_->createOptimizationProfile();
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
49 50
}

51 52
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
53
  freshDeviceId();
54 55 56 57 58 59
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
60
    GetEngineInfo();
61
#endif
62
  }
N
nhzlx 已提交
63 64 65
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
66
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
67
  freshDeviceId();
68
  VLOG(3) << "TRT to freeze network";
69 70 71 72 73 74 75
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
76 77
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
78 79
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);

Z
Zhaolong Xing 已提交
80 81 82
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
83
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
84 85 86
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
87 88
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
89 90 91
    }
  }

92
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
93
  if (enable_int8) {
94 95 96
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

97
    if (calibrator_) {
98
      infer_builder_config_->setInt8Calibrator(calibrator_);
99
    } else {
100
      infer_builder_config_->setInt8Calibrator(nullptr);
101 102 103 104 105 106 107 108 109

#if IS_TRT_VERSION_GE(5000)
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
110 111
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
112 113 114 115
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
116

117 118
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
119 120 121 122
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
123 124 125
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
126 127
        }
      }
128

129
#if IS_TRT_VERSION_GE(5122)
130 131 132 133 134 135 136 137 138 139
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
140 141
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
142 143 144 145 146
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
147 148
          }
        }
149 150 151 152 153 154
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
155
      int layers_no_int8 = 0;
156 157 158 159
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
160
          ++layers_no_int8;
161
        }
162
      }
163 164 165 166 167 168 169
      // Disable int8 or build engine failed if all layers aren't int8
      if (layers_no_int8 == network()->getNbLayers()) {
        nvinfer1::BuilderFlags flags = infer_builder_config_->getFlags();
        flags = flags & ~(1U << static_cast<int>(nvinfer1::BuilderFlag::kINT8));
        // reset flags
        infer_builder_config_->setFlags(flags);
      }
170 171 172 173 174
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
175 176
#endif
    }
N
nhzlx 已提交
177
  }
Y
Yan Chunwei 已提交
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
194 195 196
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
197 198 199 200 201
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

202 203
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
204
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
205 206
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
207
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
208 209 210 211 212 213 214 215 216 217 218
        // trt6 will check all_of input > 0
        if (!(std::all_of(input.second.begin(), input.second.end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
219
#endif
W
wenbin 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
236
    }
237 238 239 240 241 242
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
243
    }
244 245
#endif
  }
246 247 248 249 250
#if IS_TRT_VERSION_GE(8200)
  infer_builder_config_->setProfilingVerbosity(
      nvinfer1::ProfilingVerbosity::kDETAILED);
#endif

251
#if IS_TRT_VERSION_LT(8000)
252 253
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
254
#else
J
JingZhuangzhuang 已提交
255
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
256
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
257 258
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
259 260
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
261
#endif
262

263 264 265 266
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
267

W
wenbin 已提交
268 269 270 271 272 273 274
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }

275
  GetEngineInfo();
Y
Yan Chunwei 已提交
276 277
}

278
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
279
                                                nvinfer1::DataType dtype,
280
                                                const nvinfer1::Dims &dims) {
281 282 283 284
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
285 286 287 288 289 290 291 292 293 294
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
295
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
296 297 298
  return input;
}

299 300 301
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
302
  SetITensor(name, output);
303 304 305
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
306
  output->setName(name.c_str());
307 308 309 310 311
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
312
  network()->markOutput(*output);
313 314 315 316 317
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
318 319
}

320 321
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
322 323 324
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
325
  output->setName(name.c_str());
326 327 328 329 330
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
331
  network()->markOutput(*output);
L
Luo Tao 已提交
332 333
}

334 335
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
336 337 338 339 340 341 342
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
343 344 345
  itensor_map_[name] = tensor;
}

346
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
347 348 349
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
350 351 352
  return itensor_map_[name];
}

353 354 355 356
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

357 358 359 360
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
361 362
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
363 364
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
365
  platform::CPUPlace cpu_place;
366 367 368 369 370
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
371 372 373 374 375 376
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
377 378 379
  return weight_data;
}

380 381
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

382
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
383 384
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
385
  owned_plugin_.emplace_back(plugin);
386
  return network()->addPluginV2(inputs, num_inputs, *plugin);
387 388
}

389 390 391 392 393 394 395
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

396 397 398 399 400 401 402
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
403 404 405
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
406 407 408 409
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
L
Leo Chen 已提交
410
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
411 412
}

Y
Yan Chunwei 已提交
413 414 415
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle