conv_mkldnn_op.cc 42.7 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36
static mkldnn::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
37
                                            bool force_fp32_output,
38
                                            std::string fuse_activation,
39 40
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
41
  auto dst_dt = mkldnn::memory::data_type::f32;
42 43 44 45 46 47 48
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54 55 56 57 58 59
  } else {
    if (!force_fp32_output && is_bfloat16) {
      dst_dt = mkldnn::memory::data_type::bf16;
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                      mkldnn::convolution_backward_data,
                                      mkldnn::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71 72 73 74 75
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81 82
                                unique_name)),
        is_test_(ctx.Attr<bool>("is_test")) {
83
    if (!this->isCached()) {
84
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
85
          input->layout(), framework::DataLayout::kMKLDNN,
86 87
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
88
              framework::DataLayout::kMKLDNN, input->layout()));
89 90 91
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
92

93
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
94
          filter->layout(), framework::DataLayout::kMKLDNN,
95 96
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
97
              framework::DataLayout::kMKLDNN, filter->layout()));
98 99 100
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
101

102 103 104 105 106 107 108 109 110 111 112 113
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
114

115 116 117 118 119 120 121 122 123 124 125 126
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
127

128 129
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
130
            bias->layout(), framework::DataLayout::kMKLDNN,
131 132
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
133
                framework::DataLayout::kMKLDNN, bias->layout()));
134 135 136
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
137

138 139 140 141 142 143
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
144

145 146 147 148 149 150 151 152 153
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
154

155 156 157 158 159 160
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
161

162
      const auto ksize = framework::vectorize(filter_data_dims);
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187 188
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const mkldnn::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196 197 198 199 200
      auto data_type = mkldnn::memory::data_type::f32;
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
        data_type = mkldnn::memory::data_type::bf16;

A
Adam Osewski 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
      mkldnn::memory::desc src_md, weights_md;
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, mkldnn::memory::data_type::s8, chosen_memory_format);
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218
      const auto fwd_prop_kind = is_test_ ? mkldnn::prop_kind::forward_inference
                                          : mkldnn::prop_kind::forward_training;
J
jakpiase 已提交
219
      float sum_scale = 1.0f;
A
Adam Osewski 已提交
220
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
221 222
      if (platform::is_int8<T>())
        std::tie(sum_scale, output_shift_scale) = get_int8_scales(ctx);
A
Adam Osewski 已提交
223

224
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
225 226
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          output_shift_scale, sum_scale);  // for INT8 only!
A
Adam 已提交
227

228 229
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
230 231 232 233 234 235 236 237
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
238

239
        this->AcquireForwardPrimitiveDescriptor(
240
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
241
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
242 243
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
244
        this->AcquireForwardPrimitiveDescriptor(
245
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
246 247
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
248 249 250
      }
    }
  }
251

252 253 254 255 256 257 258 259 260 261 262
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward,
                                 mkldnn::convolution_backward_data,
                                 mkldnn::convolution_backward_weights>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
263 264
                                unique_name)),
        is_test_(false) {
265 266
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          in->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, in->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          filter->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, filter->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
285
          out_grad->layout(), framework::DataLayout::kMKLDNN,
286 287
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
288
              framework::DataLayout::kMKLDNN, out_grad->layout()));
289 290 291 292 293
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
294
          is_test_, false,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
315 316
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
317 318 319 320 321 322
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
323
      int groups = ctx.Attr<int>("groups");
324 325
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
326
      auto dst_tz = framework::vectorize(out_grad->dims());
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
      const mkldnn::memory::dims dilations_dims = dilations;

      const mkldnn::memory::dims stride_dims = strides;
      // Recreating FWD PD. For training there are no post ops in convolution
      mkldnn::primitive_attr conv_attr;
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
A
Adam Osewski 已提交
358 359 360 361 362 363 364 365
        mkldnn::memory::desc bias_md;
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::s32, MKLDNNMemoryFormat::x);
        } else {
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, mkldnn::memory::data_type::f32, MKLDNNMemoryFormat::x);
        }
366

367
        this->AcquireForwardPrimitiveDescriptor(
368 369 370 371 372
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
373
        this->AcquireForwardPrimitiveDescriptor(
374 375 376 377 378 379
            conv_attr, mkldnn::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

380
      this->AcquireBackwardPrimitiveDescriptor(
381 382 383 384
          mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

385
      this->AcquireBackwardWeightsPrimitiveDescriptor(
386 387 388 389 390 391
          mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

A
Adam Osewski 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  std::tuple<float, std::vector<float>> get_int8_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

    return std::make_tuple(sum_scale, output_shift_scale);
  }

  std::tuple<float, std::vector<float>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> scale_bias_data(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      scale_bias_data[i] = scale_in_data * scale_weights_data[i];
    }

    return std::make_tuple(mask_reorder, scale_bias_data);
  }

457 458 459 460 461 462 463 464 465 466
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
491 492 493 494
    } else if (fuse_activation == "hard_swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(
          scale, mkldnn::algorithm::eltwise_hardswish, fuse_alpha, fuse_beta);
495 496 497 498
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
499

500 501 502 503 504 505 506 507 508 509 510 511 512
  std::shared_ptr<mkldnn::memory>
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
513
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
514 515
  }

516 517
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
518 519 520 521
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  std::shared_ptr<mkldnn::memory>
  AcquireSrcMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory>
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorderPrimitive(
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
      const mkldnn::memory::desc& mem_md) {
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
559
      return this->AcquireMemoryWithReorder(
560 561
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem,
          is_test_);
562
    } else {
563 564
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
565
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
566
      if (user_mem_p != target_mem_p) {
567
        this->AcquireReorder(user_mem_p, target_mem_p);
568
      }
569
      return target_mem_p;
570
    }
571 572 573 574
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
575
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
576 577 578
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
579
    if (is_test_ && weights_mem_p) {
580 581
      return weights_mem_p;
    } else {
582
      const K* filter_data = filter->data<K>();
583
      auto weights_tz = framework::vectorize(filter->dims());
584
      platform::GetGroupConvWeightsTz(weights_tz, groups);
585 586

      auto user_src_md = platform::MKLDNNMemDesc(
587
          weights_tz, platform::MKLDNNGetDataType<K>(),
588 589 590 591
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
592 593
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test_,
          {}, scale_data, mask);
594
    }
595
  }
596

597
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
598
      const framework::Tensor* bias,
A
Adam Osewski 已提交
599
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
600
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
601
    if (is_test_ && bias_mem_p) {
602 603 604 605 606 607 608 609
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
610
          user_bias_md, this->fwd_pd_->bias_desc(),
611
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test_, {},
A
Adam Osewski 已提交
612
          scale_data, mask);
613
    }
614
  }
615

616 617
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
618 619
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
620 621
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
622 623 624 625 626 627 628 629 630
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
631

632 633 634
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
635 636 637 638 639 640 641 642
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
643
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
644
      this->AcquireReorder(residual_memory_p, dst_memory_p);
645 646 647 648 649
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
650
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
651 652 653
    }
    return dst_memory_p;
  }
654 655 656

 private:
  const bool is_test_;
657 658
};

A
Adam Osewski 已提交
659 660
}  // anonymous namespace

661
template <typename T, typename K>
A
Adam Osewski 已提交
662
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
663
 public:
A
Adam Osewski 已提交
664
  void Compute(const framework::ExecutionContext& ctx) const override {
665
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
666
                      platform::errors::PreconditionNotMet(
667 668 669
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
670 671 672 673 674 675 676 677
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
678
    if (!is_INT8) {
679 680 681 682 683
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeFP32<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::bf16) {
        ComputeFP32<platform::bfloat16>(ctx);
      }
684
    } else {
685 686 687 688 689 690 691
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
692
    }
693
  }
694

695
  template <typename T_out>
A
Adam Osewski 已提交
696
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
697
    auto& dev_ctx =
A
Adam Osewski 已提交
698
        ctx.template device_context<platform::MKLDNNDeviceContext>();
699
    const auto& mkldnn_engine = dev_ctx.GetEngine();
700

701 702
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
703

704 705 706 707 708
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
709

710
    ConvMKLDNNHandlerT<T, K, T_out> handler(
711 712
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
713

714
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
715

716
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
717
        filter, ctx.Attr<int>("groups"), is_conv3d);
718

719 720 721
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
722
      dst_memory_p =
723 724
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
725
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
726
    }
727

728
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
729

730 731 732 733
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
734

735
    if (bias) {
736
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias);
737
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
738
    }
739

740
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
741
    conv_p->execute(astream, args);
A
Adam 已提交
742
    astream.wait();
743

A
Adam Osewski 已提交
744 745
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
746
  }
747

748
  template <typename T_out>
A
Adam Osewski 已提交
749
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
750
    auto& dev_ctx =
A
Adam Osewski 已提交
751
        ctx.template device_context<platform::MKLDNNDeviceContext>();
752 753
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
754 755 756 757 758
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
759

760 761
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
762 763
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
764 765 766 767 768 769 770 771
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
772

A
Adam Osewski 已提交
773 774 775 776
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
777

A
Adam Osewski 已提交
778 779 780
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
781

A
Adam Osewski 已提交
782
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
783

A
Adam Osewski 已提交
784 785 786 787 788 789 790
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
791
        filter, groups, false, scale_weights_data, mask_reorder);
792

A
Adam Osewski 已提交
793 794 795
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
796
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
797 798 799 800 801 802
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
803
      dst_memory_p =
A
Adam Osewski 已提交
804 805 806 807 808 809 810
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
                       mkldnn::memory::data_type::s8) &&
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
811

A
Adam Osewski 已提交
812 813 814 815 816 817
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
818

A
Adam Osewski 已提交
819 820 821 822 823
    if (bias) {
      float mask_reorder;
      std::vector<float> scale_bias_data;
      std::tie(mask_reorder, scale_bias_data) =
          handler.get_int8_bias_scales(ctx);
A
Adam 已提交
824

A
Adam Osewski 已提交
825
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
826
          bias, scale_bias_data, mask_reorder);
A
Adam Osewski 已提交
827
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
828
    }
A
Adam Osewski 已提交
829 830 831

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
832
    astream.wait();
A
Adam Osewski 已提交
833

834
    if (need_s8_to_u8) {
X
xiaolil1 已提交
835 836
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
837 838 839

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
840
  }
841 842
};

843
template <typename T, typename K>
A
Adam Osewski 已提交
844
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
845
 public:
A
Adam Osewski 已提交
846
  void Compute(const framework::ExecutionContext& ctx) const override {
847
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
848
                      platform::errors::PreconditionNotMet(
849
                          "Operator DNNL ConvGrad must use CPUPlace"));
850 851
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
852 853 854 855
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
856 857
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
858 859 860 861 862 863 864
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

865 866 867 868 869
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
870 871

    // create mkldnn memory from input tensors (data/weights)
872
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
873

874 875 876 877 878 879
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
880

881 882
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
883
      int g = std::max(ctx.Attr<int>("groups"), 1);
884
      auto diff_weights_memory_p =
885 886
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
887

888
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
889

A
Adam 已提交
890 891 892
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
893
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
894 895
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
896

A
Adam Osewski 已提交
897
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
898 899
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
900
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
901 902 903 904

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
A
Adam Osewski 已提交
905 906
        mkldnn::memory::data_type in_type =
            framework::ToMKLDNNDataType(filter->type());
907 908
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
909
        // auto weights_tz = framework::vectorize(filter->dims());
910 911

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
912 913 914
        mkldnn::memory::format_tag out_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::goidhw
                                   : mkldnn::memory::format_tag::goihw;
915 916
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
917 918 919 920 921 922
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

923 924 925 926 927 928 929
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
930 931 932 933 934 935 936 937 938 939 940

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
        mkldnn::memory::format_tag target_format =
            weights_tz.size() == 6 ? mkldnn::memory::format_tag::oidhw
                                   : mkldnn::memory::format_tag::oihw;
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
941 942
    }
    if (input_grad) {
943 944 945 946
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
947

948 949 950 951
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
952

953
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
954

A
Adam 已提交
955 956
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
957
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
A
Adam 已提交
958 959
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
960

A
Adam Osewski 已提交
961 962
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
963
    }
X
xiaolil1 已提交
964
  }
965
};
966

967 968 969 970 971
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
972 973 974
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
975
                                    ops::ConvMKLDNNOpKernel<float, float>);
976

977 978 979 980
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

981 982
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
983
                                    ops::kConvMKLDNNINT8,
984
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
985 986 987

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
988
                                    ops::kConvMKLDNNINT8,
989
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
990 991 992 993

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
994
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
995 996 997 998

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
999
                                    ops::ConvMKLDNNOpKernel<float, float>);
1000 1001 1002 1003

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1004
                                    ops::ConvMKLDNNGradOpKernel<float, float>);