fused_attention_op.cu 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
#include <cub/cub.cuh>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"

#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/math/math_function.h"

#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");

    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
99
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
100
    auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
101 102 103
    auto *qkv_bias_out_data =
        (qkv_bias == nullptr) ? nullptr
                              : qkv_bias_out->mutable_data<T>(ctx.GetPlace());
104 105 106 107 108 109

    // get data ptr for FMHA.
    auto *transpose_out_2_data =
        transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *qk_out_data = qk_out->mutable_data<T>(ctx.GetPlace());
    auto *qktv_out_data = qktv_out->mutable_data<T>(ctx.GetPlace());
110 111 112
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : src_mask_out->mutable_data<T>(ctx.GetPlace());
113 114 115 116 117 118 119 120 121
    auto *softmax_out_data = softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *attn_dropout_mask_out_data =
        attn_dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *attn_dropout_out_data =
        attn_dropout_out->mutable_data<T>(ctx.GetPlace());
    auto *fmha_out_data = fmha_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
122 123
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for bias+dropout+residual+layernorm
    auto *dropout_mask_out_data =
        dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *final_out_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
145 146 147 148 149

    bool compute_bias = true;
    if (qkv_bias == nullptr) {
      compute_bias = false;
    }
150
    // (transA, transB, compute_bias) = (false, true, true)
151 152 153
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, true, bsz_seq,
                      output_size, input_size, compute_bias);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_rate,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, false, bsz_seq,
                      output_size, input_size, false);
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln_epsilon);

    if (pre_layer_norm) {
173 174 175 176 177 178 179
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
      auto *ln_mean_data = ln_mean->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_data = ln_var->mutable_data<U>(ctx.GetPlace());
      auto *ln_out_data = ln_out->mutable_data<T>(ctx.GetPlace());

180 181
      layer_norm_compute.ComputeForward(x_data, ln_scale_data, ln_bias_data,
                                        ln_out_data, ln_mean_data, ln_var_data);
182 183
      qkv_compute.ComputeForward(qkv_weight, ln_out, qkv_bias, qkv_out,
                                 qkv_bias_out);
184
    } else {
185 186
      qkv_compute.ComputeForward(qkv_weight, input_x, qkv_bias, qkv_out,
                                 qkv_bias_out);
187
    }
188 189 190 191 192 193 194 195 196 197 198
    if (qkv_bias == nullptr) {
      fmha_ref_compute.ComputeForward(*qkv_out, src_mask, transpose_out_2,
                                      qk_out, src_mask_out, softmax_out,
                                      attn_dropout_mask_out, attn_dropout_out,
                                      qktv_out, fmha_out);
    } else {
      fmha_ref_compute.ComputeForward(*qkv_bias_out, src_mask, transpose_out_2,
                                      qk_out, src_mask_out, softmax_out,
                                      attn_dropout_mask_out, attn_dropout_out,
                                      qktv_out, fmha_out);
    }
199

200 201 202
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    out_linear_compute.ComputeForward(out_linear_weight, fmha_out, nullptr,
                                      out_linear_out, nullptr);
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, final_out_data, dropout_mask_out_data);
    } else {
      auto *ln_scale_2_data =
          (ln_scale_2 == nullptr ? nullptr : ln_scale_2->data<U>());
      auto *ln_bias_2_data =
          (ln_bias_2 == nullptr ? nullptr : ln_bias_2->data<U>());
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());
      auto *ln_mean_2_data = ln_mean_2->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_2_data = ln_var_2->mutable_data<U>(ctx.GetPlace());
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, ln_scale_2_data, ln_bias_2_data,
          bias_dropout_residual_out_data, dropout_mask_out_data, final_out_data,
          ln_mean_2_data, ln_var_2_data);
    }
226 227 228
  }
};

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");

    // get inputs.
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *d_y_data = d_y->data<T>();

    // fw input
    auto *input_x = ctx.Input<Tensor>("X");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_2_scale = ctx.Input<Tensor>("Ln2Scale");
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
268
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
269
    auto *out_linear_weight_data = out_linear_weight->data<T>();
270 271
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    // fw output
    auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Input<Tensor>("QKOut");
    auto *qktv_out = ctx.Input<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Input<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<Tensor>("SrcMaskOut");
    auto *out_linear_out = ctx.Input<Tensor>("OutLinearOut");
    auto *ln_2_mean = ctx.Input<Tensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<Tensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Input<Tensor>("BiasDropoutResidualOut");
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *qk_out_data = qk_out->data<T>();
    auto *qktv_out_data = qktv_out->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
293 294
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    auto *out_linear_out_data = out_linear_out->data<T>();
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_qkv_out = ctx.Output<Tensor>(framework::GradVarName("QKVOut"));
    auto *d_qkv_bias_out =
        ctx.Output<Tensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out = ctx.Output<Tensor>(framework::GradVarName("QKTVOut"));
    auto *d_transpose_out_2 =
        ctx.Output<Tensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out = ctx.Output<Tensor>(framework::GradVarName("QKOut"));
    auto *d_softmax_out =
        ctx.Output<Tensor>(framework::GradVarName("SoftmaxOut"));
    auto *d_attn_dropout_out =
        ctx.Output<Tensor>(framework::GradVarName("AttnDropoutOut"));
    auto *d_src_mask_out =
        ctx.Output<Tensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out = ctx.Output<Tensor>(framework::GradVarName("FMHAOut"));
    auto *d_out_linear_out =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out =
        ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
    auto *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
319 320 321 322 323 324 325 326 327
    // when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
    // space can be reused.
    auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
                               ? nullptr
                               : d_qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_bias_out_data =
        (d_qkv_bias_out == nullptr)
            ? nullptr
            : d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
328 329 330 331 332 333 334
    auto *d_qktv_out_data = d_qktv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_transpose_out_2_data =
        d_transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *d_qk_out_data = d_qk_out->mutable_data<T>(ctx.GetPlace());
    auto *d_softmax_out_data = d_softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *d_attn_dropout_out_data =
        d_attn_dropout_out->mutable_data<T>(ctx.GetPlace());
335 336 337
    auto *d_src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : d_src_mask_out->mutable_data<T>(ctx.GetPlace());
338 339 340 341 342 343 344 345 346 347 348 349 350
    auto *d_fmha_out_data = d_fmha_out->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_out_data =
        d_out_linear_out->mutable_data<T>(ctx.GetPlace());

    // parameter grad
    auto *d_qkv_weight = ctx.Output<Tensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias = ctx.Output<Tensor>(framework::GradVarName("QKVBias"));
    auto *d_out_linear_weight =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearW"));
    auto *d_out_linear_bias =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale = ctx.Output<Tensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));
351

352
    auto *d_qkv_weight_data = d_qkv_weight->mutable_data<T>(ctx.GetPlace());
353 354 355
    auto *d_qkv_bias_data = (d_qkv_bias == nullptr)
                                ? nullptr
                                : d_qkv_bias->mutable_data<T>(ctx.GetPlace());
356 357 358
    auto *d_out_linear_weight_data =
        d_out_linear_weight->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_bias_data =
359 360 361
        (d_out_linear_bias == nullptr)
            ? nullptr
            : d_out_linear_bias->mutable_data<T>(ctx.GetPlace());
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    Tensor d_residual;
    d_residual.Resize(input_x_dims);
    T *d_residual_data = d_residual.mutable_data<T>(ctx.GetPlace());

    bool transA = false;
    bool transB = true;
383 384 385 386
    bool compute_qkv_bias = true;
    if (qkv_bias == nullptr) {
      compute_qkv_bias = false;
    }
387 388 389 390
    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
391
                      output_size, input_size, compute_qkv_bias);
392 393 394 395 396 397 398 399 400
    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_prob,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);
    output_size = hidden_size;
    transA = false;
    transB = false;
401
    bool compute_bias = false;
402 403 404 405 406 407 408 409
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
                      output_size, input_size, compute_bias);
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln2epsilon);

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, dropout_mask_out_data,
          d_out_linear_out_data, d_residual_data, d_out_linear_bias_data);
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
          (d_ln_2_scale == nullptr ? nullptr : d_ln_2_scale->mutable_data<U>(
                                                   ctx.GetPlace()));
      auto *d_ln_2_bias_data =
          (d_ln_2_bias == nullptr ? nullptr : d_ln_2_bias->mutable_data<U>(
                                                  ctx.GetPlace()));
      auto *d_bias_dropout_residual_out_data =
          d_bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, bias_dropout_residual_out_data,
          dropout_mask_out_data, ln_2_scale_data, ln_2_mean_data, ln_2_var_data,
          d_bias_dropout_residual_out_data, d_ln_2_scale_data, d_ln_2_bias_data,
          d_out_linear_out_data, d_out_linear_bias_data, d_residual_data);
    }

    out_linear_compute.ComputeBackward(fmha_out, out_linear_weight,
                                       d_out_linear_out, d_fmha_out,
                                       d_out_linear_weight, nullptr);
438

439 440 441 442 443 444 445 446 447 448 449 450 451
    if (qkv_bias != nullptr) {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_bias_out);
    } else {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_out);
    }
452 453

    if (pre_layer_norm) {
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
      auto *ln_mean = ctx.Input<Tensor>("LnMean");
      auto *ln_var = ctx.Input<Tensor>("LnVariance");
      auto *ln_out = ctx.Input<Tensor>("LnOut");
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

      auto *d_ln_out = ctx.Output<Tensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale = ctx.Output<Tensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias = ctx.Output<Tensor>(framework::GradVarName("LnBias"));
      auto *d_ln_out_data = d_ln_out->mutable_data<T>(ctx.GetPlace());
      auto *d_ln_scale_data =
          (d_ln_scale == nullptr ? nullptr
                                 : d_ln_scale->mutable_data<U>(ctx.GetPlace()));
      auto *d_ln_bias_data =
          (d_ln_bias == nullptr ? nullptr
                                : d_ln_bias->mutable_data<U>(ctx.GetPlace()));
471 472 473 474 475 476 477
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out,
                                    d_ln_out, d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_out, d_ln_out,
                                    d_qkv_weight, d_qkv_bias);
      }
478 479 480 481
      layer_norm_compute.ComputeBackward(x_data, d_ln_out_data, ln_scale_data,
                                         ln_mean_data, ln_var_data, d_x_data,
                                         d_ln_scale_data, d_ln_bias_data);
    } else {
482 483 484 485 486 487 488
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      }
489 490 491 492 493 494 495 496 497 498 499 500 501 502
    }
    // gradient accumulation
    std::vector<const Tensor *> ins;
    std::vector<Tensor *> outs;
    ins.emplace_back(&d_residual);
    ins.emplace_back(d_x);
    outs.emplace_back(d_x);
    int elewise_add_axis = -1;
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
        ctx.cuda_device_context(), ins, &outs, elewise_add_axis,
        AddFunctor<T>());
  }
};

503 504 505 506 507 508 509 510
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(fused_attention, ops::FusedAttentionOpKernel<float>,
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
511 512 513 514
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);