ParallelParameter.h 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdint.h>

Y
Yu Yang 已提交
19 20
#include <sys/time.h>
#include <unistd.h>
Z
zhangjinchao01 已提交
21 22 23 24 25
#include <iostream>
#include <string>
#include <vector>

#include "hl_gpu.h"
Y
Yu Yang 已提交
26
#include "paddle/math/Vector.h"
Z
zhangjinchao01 已提交
27 28
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/ParameterUpdateFunctions.h"
L
liaogang 已提交
29
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
30 31
#include "paddle/utils/Flags.h"
#include "paddle/utils/Locks.h"
Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

#include "ParameterConfig.pb.h"

namespace paddle {

class ParallelParameter;
class SyncParameter;
class AsyncParameter;

typedef std::shared_ptr<ParallelParameter> ParallelParameterPtr;

const int UPDATE_TYPE_NUM = 32;

/**
 * TrainRole denotes the role of current training, different roles have
 * different jobs.
 *
49
 * control, major, minor are three kinds of role to support mutiple GPUs
Z
zhangjinchao01 已提交
50 51 52 53
 * parallel SGD training. SM on GPU card has two groups, each group
 * consist of a major and a minor.
 *
 * @param    single  single GPU card single thread training.
54
 *
Z
zhangjinchao01 已提交
55 56 57
 *
 * @param    control current parameter updates via control role,
 *                   not participate in real training. control role is
58 59
 *                   responsible for merging all major's gradient and
 *                   update parameter value.
Z
zhangjinchao01 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 * @param    major   major role paticipates in real training, when local
 *                   gradient is ready, merge its corresponding minor's
 *                   gradient and notify controller: this group's gradient
 *                   is already ready.
 *
 * @param    minor   minor role participates in real training, when local
 *                   gradient is ready, only notify its corresponding major.
 *                   In order to maximum apportion jobs, after controller
 *                   updates the paramemter value, each group's minior
 *                   reponses to dispatch the latest model into local and
 *                   major.
 */
enum TrainerRole {
  TRAINER_ROLE_SINGLE,
  TRAINER_ROLE_CONTROL,
  TRAINER_ROLE_MAJOR,
  TRAINER_ROLE_MINOR,
  TRAINER_ROLE_MASTER,
  TRAINER_ROLE_SLAVE
};
typedef void (ParallelParameter::*UpdateFunction)(real learnRate);

class ParallelParameter {
public:
85 86
  static ParallelParameterPtr create(TrainerRole role,
                                     ParameterPtr localParam,
Z
zhangjinchao01 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                                     int asyncCount = 1);

  ParallelParameter(TrainerRole role, ParameterPtr localParam) {
    role_ = role;
    gradSem_.reset(new Semaphore(0));
    valueSem_.reset(new Semaphore(0));
    localParam_ = localParam;
  }

  virtual ~ParallelParameter() {}

  ParameterPtr getLocalParameter() { return localParam_; }
  bool timeWaitGradReady(int sec) {
    struct timespec ts;
    ts.tv_nsec = 0;
    ts.tv_sec = time(NULL) + sec;
    return gradSem_->timeWait(&ts);
  }
  void waitGradReady() { gradSem_->wait(); }
  void postValueReady() { valueSem_->post(); }

  void syncUpdate(TrainerRole role, real learnRate);

  virtual void synchronizeParamter() = 0;

  /**
   * for synchronous
   */
  virtual void singleUpdate(real learnRate) { (void)learnRate; }

  virtual void controlUpdate(const UpdateCallback& callback) { (void)callback; }

  virtual void majorUpdate(real learnRate) { (void)learnRate; }

  virtual void minorUpdate(real learnRate) { (void)learnRate; }

  /**
   * for asynchronous
   */
  virtual void slaveUpdate(real learnRate) { (void)learnRate; }

protected:
  TrainerRole role_;
  ParameterPtr localParam_;
  std::unique_ptr<Semaphore>
      gradSem_;  /// wether the local parameter-gradient is ready
  std::unique_ptr<Semaphore>
      valueSem_;  /// wether the local parameter-value is updated
};

/**
138
 * this class is designed for multi-threading training.
Z
zhangjinchao01 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
 *
 * "Synchronous" means multiple GPUs calculate 1/4 mini-Batch,
 * but will get only one gradient
 */
class SyncParameter : public ParallelParameter {
public:
  SyncParameter(TrainerRole role, ParameterPtr localParam)
      : ParallelParameter(role, localParam) {
    controlParam_ = nullptr;
    majorPartners_.clear();
    minorPartners_.clear();
  }
  ~SyncParameter() {
    majorPartners_.clear();
    minorPartners_.clear();
  }
  void attachControlParam(ParallelParameterPtr controler);

  void attachMajorParam(ParallelParameterPtr partner);

  void attachMinorParam(ParallelParameterPtr partner, int deviceId);

  void waitAllMajorGradReady();

  void synchronizeParamter();

  void singleUpdate(real learnRate);

  void controlUpdate(const UpdateCallback& callback);

  void majorUpdate(real learnRate);

  void minorUpdate(real learnRate);

  std::vector<ParallelParameterPtr>& getMajorPartners() {
    return majorPartners_;
  }

  std::vector<ParallelParameterPtr>& getMinorPartners() {
    return minorPartners_;
  }

private:
  // The following variables are used in a multithreaded training situation
  // partnerParam_ is local-parameter's partner
  // controlParam_ is the controller-thread 's parameter
  ParameterPtr partnerParam_;
  std::vector<ParallelParameterPtr> majorPartners_;
  std::vector<ParallelParameterPtr> minorPartners_;
  std::vector<int> minorDeviceIds_;
  ParallelParameterPtr controlParam_;
};

class AsyncParameter : public ParallelParameter {
public:
  AsyncParameter(TrainerRole role, int asyncCount, ParameterPtr localParam);

  void clearCounter() { accumCounter_ = 0; }

  VectorPtr getAccum() { return gradientAccum_; }

  void synchronizeParamter() {
    if (accumCounter_ == asyncCount_) {
      valueSem_->wait();
      clearCounter();
      gradientAccum_->zeroMem();
    }
  }

  /**
   * When asynchronous training, update strategy including slave and master.
   *
   * slave: If in range asyncCount, adopting self-update method.
212
   *        If beyond asyncCount, waiting for master to update.
Z
zhangjinchao01 已提交
213 214 215 216 217 218
   */
  void slaveUpdate(real learnRate);

  /**
   * When asynchronous training, update strategy including slave and master.
   *
219
   * master: it only polls slaves, do not training data.
Z
zhangjinchao01 已提交
220 221 222 223 224 225 226 227 228 229
   *         If slave's gradient is ready, fetch it.
   *         Update master's parameter, then copy it into
   *         corresponding slave.
   */
  bool masterUpdate(ParallelParameterPtr slaveParam,
                    const UpdateCallback& callback);

private:
  /**
   * When asynchronous training, every aysnc trainer needs to
230
   * accumulate a number of batch gradient.
Z
zhangjinchao01 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
   *
   * gradientAccum_ is used to save the sum of gradients.
   */
  VectorPtr gradientAccum_;

  /// Asynchronous count.
  int asyncCount_;
  /// Accumulate counter of current gradients.
  int accumCounter_;
};

typedef std::map<std::string, ParallelParameterPtr> ParallelParameterMap;

}  // namespace paddle