clip_by_norm_op.cu 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wwhu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wwhu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wwhu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wwhu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/clip_by_norm_op.h"
L
Leo Chen 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename Tx, typename Ty = Tx>
struct SquareTransformer {
  HOSTDEVICE explicit inline SquareTransformer(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x) * static_cast<Ty>(x);
  }

  HOSTDEVICE inline Ty operator()(const Tx* x) const {
    return static_cast<Ty>(x[0]) * static_cast<Ty>(x[0]);
  }
};

template <typename Tx, typename Ty = Tx>
struct SquareSum {
  using Transformer = SquareTransformer<Tx, Ty>;

  inline Ty initial() { return static_cast<Ty>(0.0f); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return b + a;
  }
};

template <>
class ClipByNormKernel<platform::CUDADeviceContext, platform::float16>
    : public framework::OpKernel<platform::float16> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto max_norm = context.Attr<float>("max_norm");
    auto in_var = context.InputVar("X");
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();

    Tensor* output = nullptr;
    const Tensor* input = nullptr;
    if (in_var->IsType<framework::LoDTensor>()) {
      input = context.Input<Tensor>("X");

      output = context.Output<Tensor>("Out");
      output->mutable_data<platform::float16>(context.GetPlace());
    } else if (in_var->IsType<SelectedRows>()) {
      auto* x = context.Input<SelectedRows>("X");

      // merge ids in selected rows first
      math::scatter::MergeAdd<platform::CUDADeviceContext, platform::float16>
          merge_func;
      SelectedRows* merged_input =
          const_cast<framework::Scope&>(context.scope())
              .Var()
              ->GetMutable<SelectedRows>();
      merge_func(context.template device_context<platform::CUDADeviceContext>(),
                 *x, merged_input);
      input = &(merged_input->value());

      SelectedRows* output_selected_rows = context.Output<SelectedRows>("Out");
      output_selected_rows->set_rows(merged_input->rows());
      output_selected_rows->set_height(merged_input->height());
      output = output_selected_rows->mutable_value();
      output->Resize(merged_input->value().dims());
      output->mutable_data<platform::float16>(context.GetPlace());
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Invalid input variable type, only support LodTensor and "
          "SelectedRows types, but got type is %s.",
          framework::ToTypeName(in_var->Type())));
    }

    PADDLE_ENFORCE_NOT_NULL(input,
                            platform::errors::InvalidArgument(
                                "Input(X) of ClipByNormOp should not be null. "
                                "Please check if it is created correctly."));
    std::vector<int> reduce_dims;
    reduce_dims.resize(input->dims().size());
    for (int i = 0; i < reduce_dims.size(); ++i) {
      reduce_dims[i] = i;
    }
    Tensor tmp = context.AllocateTmpTensor<float, platform::CUDADeviceContext>(
        {1}, dev_ctx);
    TensorReduceFunctorImpl<platform::float16, float, SquareSum>(
        *input, &tmp, reduce_dims, dev_ctx.stream());
    auto tmp_eigen = EigenVector<float>::Flatten(tmp);
    auto x_norm = tmp_eigen.sqrt();

    auto x = EigenVector<platform::float16>::Flatten(*input);
    auto out = EigenVector<platform::float16>::Flatten(*output);

    auto& place =
        *context.template device_context<platform::CUDADeviceContext>()
             .eigen_device();

    auto temp = (x_norm <= max_norm).template cast<float>();
    auto epsilon =
        ((x_norm <= static_cast<float>(1e-30)).all().template cast<float>()) *
        static_cast<float>(1e-6);

    auto scaling =
        (temp + (static_cast<float>(1) - temp) * max_norm / (x_norm + epsilon))
            .template cast<platform::float16>();
    Eigen::array<int, 1> one_dim{{1}};
    Eigen::DSizes<int, 1> m_dsize(input->numel());

    out.device(place) = x * scaling.reshape(one_dim).broadcast(m_dsize);
  }
};

}  // namespace operators
}  // namespace paddle
W
wwhu 已提交
129 130

namespace ops = paddle::operators;
L
Leo Chen 已提交
131
namespace plat = paddle::platform;
Q
QI JUN 已提交
132 133
REGISTER_OP_CUDA_KERNEL(
    clip_by_norm,
L
Leo Chen 已提交
134 135
    ops::ClipByNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ClipByNormKernel<paddle::platform::CUDADeviceContext, plat::float16>);