matmul_v2_op.h 10.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/operators/math/complex_functors.h"
S
ShenLiang 已提交
26 27
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

Z
zyfncg 已提交
28
// only can include the headers in paddle/pten/api dirs
29 30
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
31
#include "paddle/pten/kernels/matmul_grad_kernel.h"
32
#include "paddle/pten/kernels/matmul_kernel.h"
Z
zyfncg 已提交
33

34
#if defined(__NVCC__) || defined(__HIPCC__)
35
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
S
ShenLiang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
Z
zyfncg 已提交
52 53 54 55 56 57 58 59 60

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    Out->mutable_data<T>(X->place());

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*X);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*Y);
    auto pt_out = paddle::experimental::MakePtenDenseTensor(*Out);

    // call new kernel
61 62
    pten::MatmulKernel<T>(dev_ctx, *pt_x, *pt_y, trans_x, trans_y,
                          pt_out.get());
S
ShenLiang 已提交
63 64 65
  }
};

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

S
ShenLiang 已提交
139 140 141 142
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
143 144
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
145 146 147
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
S
ShenLiang 已提交
148 149 150 151

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

152 153
    if (dx) dx->mutable_data<T>(ctx.GetPlace());
    if (dy) dy->mutable_data<T>(ctx.GetPlace());
C
chentianyu03 已提交
154

155 156 157 158 159 160 161
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_dx = dx ? paddle::experimental::MakePtenDenseTensor(*dx)
                    : std::unique_ptr<pten::DenseTensor>(nullptr);
    auto pt_dy = dy ? paddle::experimental::MakePtenDenseTensor(*dy)
                    : std::unique_ptr<pten::DenseTensor>(nullptr);
162

163
    auto& dev_ctx = ctx.device_context<DeviceContext>();
W
wawltor 已提交
164

165 166 167
    // call new kernel
    pten::MatmulGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, transpose_x,
                              transpose_y, pt_dx.get(), pt_dy.get());
S
ShenLiang 已提交
168 169 170
  }
};

W
wawltor 已提交
171 172 173 174
template <typename DeviceContext, typename T>
class MatMulV2DoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
175 176 177
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
W
wawltor 已提交
178 179 180 181 182 183 184 185 186 187
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");

    auto* dx = context.Output<framework::Tensor>("DX");
    auto* dy = context.Output<framework::Tensor>("DY");
    auto* ddout = context.Output<framework::Tensor>("DDOut");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

188 189 190
    if (dx) dx->mutable_data<T>(context.GetPlace());
    if (dy) dy->mutable_data<T>(context.GetPlace());
    if (ddout) ddout->mutable_data<T>(context.GetPlace());
W
wawltor 已提交
191

192 193 194 195 196 197 198 199
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_ddx = paddle::experimental::MakePtenDenseTensor(*ddx);
    auto pt_ddy = paddle::experimental::MakePtenDenseTensor(*ddy);
    auto pt_dx = paddle::experimental::MakePtenDenseTensor(*dx);
    auto pt_dy = paddle::experimental::MakePtenDenseTensor(*dy);
    auto pt_ddout = paddle::experimental::MakePtenDenseTensor(*ddout);
W
wawltor 已提交
200

201
    auto& dev_ctx = context.device_context<DeviceContext>();
W
wawltor 已提交
202

203 204 205 206
    // call new kernel
    pten::MatmulDoubleGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, *pt_ddx,
                                    *pt_ddy, transpose_x, transpose_y,
                                    pt_dx.get(), pt_dy.get(), pt_ddout.get());
W
wawltor 已提交
207 208
  }
};
209 210 211 212 213 214

template <typename DeviceContext, typename T>
class MatMulV2TripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    // get input
215 216 217 218 219
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

    auto* d_dx = context.Input<framework::Tensor>("D_DX");
    auto* d_dy = context.Input<framework::Tensor>("D_DY");
    auto* d_ddout = context.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = context.Output<framework::Tensor>("D_X_out");
    auto* out_d_y = context.Output<framework::Tensor>("D_Y_out");
    auto* out_d_dout = context.Output<framework::Tensor>("D_DOut_out");

    auto* out_d_ddx = context.Output<framework::Tensor>("D_DDX_out");
    auto* out_d_ddy = context.Output<framework::Tensor>("D_DDY_out");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    if (out_d_x) out_d_x->mutable_data<T>(context.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(context.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(context.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(context.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(context.GetPlace());

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_dout = paddle::experimental::MakePtenDenseTensor(*dout);
    auto pt_ddx = paddle::experimental::MakePtenDenseTensor(*ddx);
    auto pt_ddy = paddle::experimental::MakePtenDenseTensor(*ddy);
    auto pt_d_dx = paddle::experimental::MakePtenDenseTensor(*d_dx);
    auto pt_d_dy = paddle::experimental::MakePtenDenseTensor(*d_dy);
    auto pt_d_ddout = paddle::experimental::MakePtenDenseTensor(*d_ddout);

    auto pt_out_d_x = paddle::experimental::MakePtenDenseTensor(*out_d_x);
    auto pt_out_d_y = paddle::experimental::MakePtenDenseTensor(*out_d_y);
    auto pt_out_d_dout = paddle::experimental::MakePtenDenseTensor(*out_d_dout);
    auto pt_out_d_ddx = paddle::experimental::MakePtenDenseTensor(*out_d_ddx);
    auto pt_out_d_ddy = paddle::experimental::MakePtenDenseTensor(*out_d_ddy);

    auto& dev_ctx = context.device_context<DeviceContext>();
    // call new kernel
    pten::MatmulTripleGradKernel<T>(dev_ctx, *pt_x, *pt_y, *pt_dout, *pt_ddx,
                                    *pt_ddy, *pt_d_dx, *pt_d_dy, *pt_d_ddout,
                                    transpose_x, transpose_y, pt_out_d_x.get(),
                                    pt_out_d_y.get(), pt_out_d_dout.get(),
                                    pt_out_d_ddx.get(), pt_out_d_ddy.get());
264 265 266
  }
};

S
ShenLiang 已提交
267 268
}  // namespace operators
}  // namespace paddle