helper.h 5.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
N
nhzlx 已提交
20 21 22
#include <string>
#include <utility>
#include <vector>
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31 32 33
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

34 35 36 37
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

38 39 40 41
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

42 43 44 45 46 47
#if IS_TRT_VERSION_GE(8000)
#define TRT_NOEXCEPT noexcept
#else
#define TRT_NOEXCEPT
#endif

Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
61
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
62
  return static_cast<nvinfer1::IBuilder*>(
63
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
64
}
65
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
66
  return static_cast<nvinfer1::IRuntime*>(
67
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
68
}
69 70
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
71 72
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
73 74 75
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
76 77
#else
static int GetInferLibVersion() { return 0; }
78
#endif
Y
Yan Chunwei 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93
static std::tuple<int, int, int> GetTrtRuntimeVersion() {
  int ver = GetInferLibVersion();
  int major = ver / 1000;
  ver -= major * 1000;
  int minor = ver / 100;
  int patch = ver - minor * 100;
  return std::tuple<int, int, int>{major, minor, patch};
}

static std::tuple<int, int, int> GetTrtCompileVersion() {
  return std::tuple<int, int, int>{NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR,
                                   NV_TENSORRT_PATCH};
}

Y
Yan Chunwei 已提交
94 95 96
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
97 98
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
99
    switch (severity) {
P
Pei Yang 已提交
100
      case Severity::kVERBOSE:
101
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
102
        break;
P
Pei Yang 已提交
103 104 105
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

123
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
124 125
};

N
nhzlx 已提交
126 127 128 129 130
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

131
  virtual void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT {
N
nhzlx 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    auto record =
        std::find_if(mProfile.begin(), mProfile.end(),
                     [&](const Record& r) { return r.first == layerName; });
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
      printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(),
             mProfile[i].second);
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

152 153 154 155 156 157 158 159
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

160 161 162 163 164 165 166 167 168 169 170 171 172
inline void PrintITensorShape(nvinfer1::ITensor* X) {
  auto dims = X->getDimensions();
  auto name = X->getName();
  std::cout << "ITensor " << name << " shape: [";
  for (int i = 0; i < dims.nbDims; i++) {
    if (i == dims.nbDims - 1)
      std::cout << dims.d[i];
    else
      std::cout << dims.d[i] << ", ";
  }
  std::cout << "]\n";
}

173 174 175 176 177 178 179 180 181 182
template <typename T>
inline std::string Vec2Str(const std::vector<T>& vec) {
  std::ostringstream os;
  os << "(";
  for (size_t i = 0; i < vec.size() - 1; ++i) {
    os << vec[i] << ",";
  }
  os << vec[vec.size() - 1] << ")";
  return os.str();
}
Y
Yan Chunwei 已提交
183 184 185
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle