test_switch_autotune.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import unittest
import numpy


class SimpleNet(paddle.nn.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.conv = paddle.nn.Conv2D(1, 2, (3, 3))

    def forward(self, image, label=None):
        return self.conv(image)


def train_dygraph(net, data):
    out = net(data)
    loss = paddle.mean(out)
    adam = paddle.optimizer.Adam(parameters=net.parameters())
    out.backward()
    adam.step()
    adam.clear_grad()


def static_program(net, data):
    out = net(data)
    loss = paddle.mean(out)
    adam = paddle.optimizer.Adam()
    adam.minimize(loss)
    return loss


class TestAutoTune(unittest.TestCase):
    def test_autotune(self):
        paddle.fluid.core.disable_autotune()
        status = paddle.fluid.core.autotune_status()
        self.assertEqual(status["use_autotune"], False)

        paddle.fluid.core.enable_autotune()
        status = paddle.fluid.core.autotune_status()
        self.assertEqual(status["use_autotune"], True)

    def check_status(self, expected_res):
        status = paddle.fluid.core.autotune_status()
        for key in status.keys():
            self.assertEqual(status[key], expected_res[key])


class TestDygraphAutoTuneStatus(TestAutoTune):
    def run_program(self, enable_autotune):
        if enable_autotune:
            paddle.fluid.core.enable_autotune()
        else:
            paddle.fluid.core.disable_autotune()
        paddle.fluid.core.autotune_range(1, 2)
        x_var = paddle.uniform((1, 1, 8, 8), dtype='float32', min=-1., max=1.)
        net = SimpleNet()
        for i in range(3):
            train_dygraph(net, x_var)
            if i >= 1 and i < 2:
                expected_res = {
                    "step_id": i,
                    "use_autotune": enable_autotune,
                    "cache_size": 0,
                    "cache_hit_rate": 0
                }
                self.check_status(expected_res)
            else:
                expected_res = {
                    "step_id": i,
                    "use_autotune": False,
                    "cache_size": 0,
                    "cache_hit_rate": 0
                }
                self.check_status(expected_res)

    def test_enable_autotune(self):
        self.run_program(enable_autotune=True)

    def test_disable_autotune(self):
        self.run_program(enable_autotune=False)


class TestStaticAutoTuneStatus(TestAutoTune):
    def run_program(self, enable_autotune):
        paddle.enable_static()
        if enable_autotune:
            paddle.fluid.core.enable_autotune()
        else:
            paddle.fluid.core.disable_autotune()
        paddle.fluid.core.autotune_range(1, 2)

        data_shape = [1, 1, 8, 8]
        data = paddle.static.data(name='X', shape=data_shape, dtype='float32')
        net = SimpleNet()
        loss = static_program(net, data)
        place = paddle.CUDAPlace(0) if paddle.fluid.core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        exe = paddle.static.Executor(place)
        exe.run(paddle.static.default_startup_program())
        x = numpy.random.random(size=data_shape).astype('float32')

        for i in range(3):
            exe.run(feed={'X': x}, fetch_list=[loss])
            status = paddle.fluid.core.autotune_status()
            # In static mode, the startup_program will run at first.
            # The expected step_id will be increased by 1.
            if i >= 0 and i < 1:
                expected_res = {
                    "step_id": i + 1,
                    "use_autotune": enable_autotune,
                    "cache_size": 0,
                    "cache_hit_rate": 0
                }
                self.check_status(expected_res)
            else:
                expected_res = {
                    "step_id": i + 1,
                    "use_autotune": False,
                    "cache_size": 0,
                    "cache_hit_rate": 0
                }
                self.check_status(expected_res)
        paddle.disable_static()

    def test_enable_autotune(self):
        self.run_program(enable_autotune=True)

    def test_disable_autotune(self):
        self.run_program(enable_autotune=False)


if __name__ == '__main__':
    unittest.main()