analyzer_seq_pool1_tester.cc 7.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21 22 23
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

24 25 26 27 28 29
// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
static const char out_var_name[] = "reduce_sum_0.tmp_0";

// for diff: 154, for speed 111
constexpr int num_slots = 154;

T
tensor-tang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
59 60 61 62
      PADDLE_ENFORCE_EQ(
          slot_data.size() % 11, 0UL,
          paddle::platform::errors::Fatal("line %d, %s should be divisible",
                                          num_lines, name));
T
tensor-tang 已提交
63 64 65
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
66 67 68 69 70 71
    PADDLE_ENFORCE_EQ(
        num_samples * num_slots, static_cast<size_t>(num_lines),
        paddle::platform::errors::Fatal("num samples should be divisible"));
    PADDLE_ENFORCE_GT(num_samples, 0UL,
                      paddle::platform::errors::Fatal(
                          "The num of samples should be greater than 0."));
T
tensor-tang 已提交
72 73 74 75
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
76 77 78
      PADDLE_ENFORCE_EQ(
          it->second.size(), num_samples,
          paddle::platform::errors::Fatal("size of each slot should be equal"));
T
tensor-tang 已提交
79 80
    }
    size_t num_batches = num_samples / bs;
81
    EXPECT_GT(num_batches, 0UL);
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
99 100 101 102
          PADDLE_ENFORCE_EQ(
              len * 11, datas[id].size(),
              paddle::platform::errors::Fatal("%s %d size should be divisible",
                                              slot.name, id));
T
tensor-tang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

T
tensor-tang 已提交
137
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
T
tensor-tang 已提交
138 139 140 141 142 143 144 145 146
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
T
tensor-tang 已提交
147 148
}

T
tensor-tang 已提交
149 150 151 152
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
Y
Yan Chunwei 已提交
153
  cfg->SwitchIrDebug();
154
  cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
L
luotao1 已提交
155 156 157
  if (FLAGS_zero_copy) {
    cfg->SwitchUseFeedFetchOps(false);
  }
T
tensor-tang 已提交
158 159
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
160
    cfg->pass_builder()->AppendPass("fc_mkldnn_pass");
T
tensor-tang 已提交
161
  }
162 163 164
  // Enable seqpool_concat_fuse_pass, disabled by default since it takes much
  // time
  cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass");
T
tensor-tang 已提交
165 166
}

T
tensor-tang 已提交
167 168
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
T
tensor-tang 已提交
169
  SetConfig(&cfg, use_mkldnn);
T
tensor-tang 已提交
170

171
  std::vector<std::vector<PaddleTensor>> outputs;
T
tensor-tang 已提交
172 173 174 175 176 177 178 179
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

T
tensor-tang 已提交
180 181 182 183 184 185 186 187 188 189 190
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

191 192 193 194 195 196 197 198 199 200 201
// Compare Deterministic result
TEST(Analyzer_seq_pool1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

L
luotao1 已提交
202 203
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
T
tensor-tang 已提交
204 205 206 207
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
208
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
T
tensor-tang 已提交
209
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
T
tensor-tang 已提交
210
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
211 212 213
  ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
  ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
T
tensor-tang 已提交
214
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
215 216
  EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
T
tensor-tang 已提交
217
  LOG(INFO) << "num_ops: " << num_ops;
218
  EXPECT_EQ(num_ops, 171);
T
tensor-tang 已提交
219 220
}

L
luotao1 已提交
221 222 223 224
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_seq_pool1, compare_zero_copy) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
225

226 227 228
  AnalysisConfig cfg1;
  SetConfig(&cfg1);

229 230
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
L
luotao1 已提交
231 232 233
  std::vector<std::string> outputs_name;
  outputs_name.emplace_back(out_var_name);
  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
234
                             reinterpret_cast<PaddlePredictor::Config *>(&cfg1),
L
luotao1 已提交
235
                             input_slots_all, outputs_name);
T
tensor-tang 已提交
236 237
}

T
tensor-tang 已提交
238 239 240
}  // namespace analysis
}  // namespace inference
}  // namespace paddle