pad3d_op.cc 8.3 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <memory>
#include <string>
#include <vector>
19

20
#include "paddle/fluid/framework/infershape_utils.h"
L
littletomatodonkey 已提交
21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/phi/infermeta/unary.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
L
littletomatodonkey 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

using framework::Tensor;

class Pad3dOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    // only constant mode and non-blocked layouts are supported for oneDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        ctx.Attr<std::string>("mode") == "constant" &&
        ctx.Input<Tensor>("X")
                ->mem_desc()
                .data.format_desc.blocking.inner_nblks == 0) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name,
      const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN)) {
      auto attrs = Attrs();
      auto ar = paddle::framework::AttrReader(attrs);
      const std::string data_format = ar.Get<std::string>("data_format");
      return framework::OpKernelType(
          expected_kernel_type.data_type_,
          tensor.place(),
          framework::StringToDataLayout(data_format));
    }
#endif
L
littletomatodonkey 已提交
70
    return framework::OpKernelType(
71
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
L
littletomatodonkey 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }
};

class Pad3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input of pad3d op. "
             "The input should be a 5-D tensor with formate NCDHW or NDHWC.");
    AddOutput("Out",
              "The output of pad3d op. "
              "A tensor with the same shape as X.");
    AddInput("Paddings",
             "A 1-D tensor to describe the padding rules."
             "paddings=[0, 1, 2, 3, 4, 5] means "
             "padding 0 column to left, 1 column to right, "
             "2 row to top, 3 row to bottom, 4 depth to front "
             "and 5 depth to back. Size of paddings must be 6.")
        .AsDispensable();
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules."
        "paddings=[0, 1, 2, 3, 4, 5] means "
        "padding 0 column to left, 1 column to right, "
        "2 row to top, 3 row to bottom, 4 depth to front "
        "and 5 depth to back. Size of paddings must be 6.");
    AddAttr<float>("value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas in constant mode.")
        .SetDefault(0.0f);
    AddAttr<std::string>(
        "mode",
        "(string, default constant) "
        "Four modes: constant(default), reflect, replicate, circular.")
        .SetDefault("constant");
    AddAttr<std::string>(
        "data_format",
        "(string, default NCDHW) Only used in "
        "An optional string from: \"NDHWC\", \"NCDHW\". "
        "Defaults to \"NDHWC\". Specify the data format of the input data.")
        .SetDefault("NCDHW");
    AddComment(R"DOC(
Pad3d Operator.
Pad 3-d images according to 'paddings' and 'mode'. 
If mode is 'reflect', paddings[0] and paddings[1] must be no greater
than width-1. The height and depth dimension have the same condition.

Given that X is a channel of image from input:

X = [[[[[1, 2, 3],
     [4, 5, 6]]]]]

Case 0:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'constant'
pad_value = 0

Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
          [0. 0. 1. 2. 3. 0. 0.]
          [0. 0. 4. 5. 6. 0. 0.]
          [0. 0. 0. 0. 0. 0. 0.]]]]]

Case 1:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'reflect'

Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
          [3. 2. 1. 2. 3. 2. 1.]
          [6. 5. 4. 5. 6. 5. 4.]
          [3. 2. 1. 2. 3. 2. 1.]]]]]

Case 2:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'replicate'

Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
          [1. 1. 1. 2. 3. 3. 3.]
          [4. 4. 4. 5. 6. 6. 6.]
          [4. 4. 4. 5. 6. 6. 6.]]]]]

Case 3:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'circular'

Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
          [2. 3. 1. 2. 3. 1. 2.]
          [5. 6. 4. 5. 6. 4. 5.]
          [2. 3. 1. 2. 3. 1. 2.]]]]]

)DOC");
  }
};

class Pad3dOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad3d@Grad");
176 177 178 179
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "Pad3d@Grad");
L
littletomatodonkey 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class Pad3dOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> bind) const override {
    bind->SetInput("X", this->Input("X"));
    if (this->HasInput("Paddings")) {
      bind->SetInput("Paddings", this->Input("Paddings"));
    }
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("pad3d_grad");
  }
};

C
ceci3 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
template <typename T>
class Pad3dOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    if (this->HasInput("Paddings")) {
      grad_op->SetInput("Paddings", this->Input("Paddings"));
    }
    grad_op->SetType("pad3d");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

L
littletomatodonkey 已提交
231 232 233 234 235 236 237
DECLARE_NO_NEED_BUFFER_VARS_INFERER(Pad3dOpGradNoNeedBufferVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

238 239
DECLARE_INFER_SHAPE_FUNCTOR(pad3d,
                            Pad3dInferShapeFunctor,
240 241
                            PD_INFER_META(phi::Pad3dInferMeta));

242 243 244
REGISTER_OPERATOR(pad3d,
                  ops::Pad3dOp,
                  ops::Pad3dOpMaker,
L
littletomatodonkey 已提交
245
                  ops::Pad3dOpGradMaker<paddle::framework::OpDesc>,
246 247
                  ops::Pad3dOpGradMaker<paddle::imperative::OpBase>,
                  Pad3dInferShapeFunctor);
248 249
REGISTER_OPERATOR(pad3d_grad,
                  ops::Pad3dOpGrad,
C
ceci3 已提交
250 251
                  ops::Pad3dOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Pad3dOpDoubleGradMaker<paddle::imperative::OpBase>,
L
littletomatodonkey 已提交
252
                  ops::Pad3dOpGradNoNeedBufferVarsInferer);