tensor_util.h 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18 19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
C
chengduo 已提交
22
#include "paddle/fluid/platform/temporary_allocator.h"
D
dzhwinter 已提交
23 24 25 26

namespace paddle {
namespace framework {

C
chengduo 已提交
27 28 29 30 31 32
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
Y
Yi Wang 已提交
33
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
34
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
35 36 37 38 39 40 41 42

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
43 44
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
45

F
fengjiayi 已提交
46 47
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
48

Y
Yi Wang 已提交
49 50 51 52 53
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
54

Y
Yi Wang 已提交
55 56 57 58 59
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
60

61
// copy the result bool to cpu
Y
Yi Wang 已提交
62 63
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
64 65 66 67 68 69
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
70

Y
Yi Wang 已提交
71 72 73 74
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
D
dzhwinter 已提交
75

Y
Yi Wang 已提交
76 77 78
//
// The implementation of template functions.
//
D
dzhwinter 已提交
79

D
dzhwinter 已提交
80
template <typename T>
Y
Yi Wang 已提交
81 82
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
    memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, src_place,
                 src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
D
dzhwinter 已提交
97
        boost::get<platform::CUDAPlace>(dst_place), dst_ptr, src_place, src_ptr,
D
dzhwinter 已提交
98 99 100 101 102 103
        size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
104
template <typename T>
Y
Yi Wang 已提交
105
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
106 107 108 109 110 111 112 113 114 115
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

D
dzhwinter 已提交
116
template <typename T>
Y
Yi Wang 已提交
117 118
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
119 120 121 122 123 124 125 126
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
127 128
    memory::Copy(dst_place, dst_ptr,
                 boost::get<platform::CPUPlace>(src.place()), src_ptr, size);
D
dzhwinter 已提交
129 130 131 132
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
D
dzhwinter 已提交
133
        dst_place, dst_ptr, boost::get<platform::CUDAPlace>(src.place()),
134
        src_ptr, size,
D
dzhwinter 已提交
135 136 137 138 139
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
140
template <typename T>
Y
Yi Wang 已提交
141
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  PADDLE_ENFORCE(platform::is_cpu_place(src.place()));

  memory::Copy(dst_place, dst_ptr, boost::get<platform::CPUPlace>(src.place()),
               src_ptr, size);
}

C
chengduo 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
template <typename T>
paddle::framework::Tensor GetTensor(
    memory::allocation::AllocationPtr temp_allocation_ptr,
    const framework::DDim& dim) {
  auto& deleter = temp_allocation_ptr.get_deleter();
  auto* allocation_ptr = temp_allocation_ptr.release();
  auto shared_allocation =
      std::shared_ptr<memory::allocation::Allocation>(allocation_ptr, deleter);

  PADDLE_ENFORCE(
      dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
      "The AllocationPtr must be TemporaryAllocation.");
  PADDLE_ENFORCE_EQ(allocation_ptr->size(),
                    framework::product(dim) * sizeof(T));

  paddle::framework::Tensor temp_tensor(
      framework::ToDataType(std::type_index(typeid(T))));
  temp_tensor.Resize(dim);
  temp_tensor.ResetHolder(std::move(shared_allocation));
  return temp_tensor;
}
D
dzhwinter 已提交
176 177
}  // namespace framework
}  // namespace paddle