alexnet.py 11.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dangqingqing 已提交
14 15 16 17 18 19 20 21 22 23
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

24 25
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
26 27 28 29 30 31 32 33 34 35 36
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

37

D
dangqingqing 已提交
38 39
def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
    with tf.name_scope(name) as scope:
40 41 42 43 44
        kernel = tf.get_variable(
            name + '_w', [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)
D
dangqingqing 已提交
45 46 47 48 49 50

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
51
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
52
        else:
53 54 55 56 57 58 59 60 61 62 63 64 65
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)

        biases = tf.get_variable(
            name=name + '_b',
            shape=[nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
D
dangqingqing 已提交
66 67 68
            dtype=tf.float32)

        bias = tf.reshape(
69 70
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
D
dangqingqing 已提交
71 72 73 74 75
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

76

D
dangqingqing 已提交
77 78
def _affine(name, inpOp, nIn, nOut, wd=0.0005, act=True, drop=None):
    with tf.name_scope(name) as scope:
79 80 81 82
        kernel = tf.get_variable(
            name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
D
dangqingqing 已提交
83 84 85 86 87 88
            dtype=tf.float32)

        if wd is not None and wd > 0:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

89 90 91 92 93 94
        biases = tf.get_variable(
            name + '_b', [nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
            dtype=tf.float32,
            trainable=True)
D
dangqingqing 已提交
95 96 97 98 99 100 101 102

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        output = tf.nn.dropout(affine1, drop) if drop else affine1

        return output

103

D
dangqingqing 已提交
104 105
def _mpool(name, inpOp, kH, kW, dH, dW):
    if FLAGS.data_format == 'NCHW':
106 107
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
108
    else:
109 110 111 112 113 114 115 116 117 118
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding='VALID',
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
119 120

def _norm(name, l_input, lsize=4):
121 122 123
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
124
                     alpha=0.001 / 9.0,
125 126
                     beta=0.75,
                     name=name)
D
dangqingqing 已提交
127 128 129 130 131


def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
132
        logits, labels, name='cross_entropy_per_example')
D
dangqingqing 已提交
133 134 135 136 137 138 139
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

140

D
dangqingqing 已提交
141 142 143 144 145 146 147 148 149
def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

150

D
dangqingqing 已提交
151
def inference(images):
152 153 154 155 156 157 158 159 160 161
    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
    norm1 = _norm('norm1', pool1, lsize=5)
    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
    norm2 = _norm('norm2', pool2, lsize=5)
    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
D
dangqingqing 已提交
162 163 164
    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096, 0.5)
    affn2 = _affine('fc7', affn1, 4096, 4096, 0.5)
165
    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
D
dangqingqing 已提交
166 167 168 169 170

    return affn3


def time_tensorflow_run(session, target, info_string):
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
193 194

def _add_loss_summaries(total_loss):
195
    """
D
dangqingqing 已提交
196 197 198 199 200 201 202 203
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
204 205 206 207
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])
D
dangqingqing 已提交
208

209 210 211 212 213 214 215
    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))
D
dangqingqing 已提交
216

217
    return loss_averages_op
D
dangqingqing 已提交
218 219 220


def run_benchmark():
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            # Generate some dummy images.
            image_size = 224
            # Note that our padding definition is slightly different the cuda-convnet.
            # In order to force the model to start with the same activations sizes,
            # we add 3 to the image_size and employ VALID padding above.
            if FLAGS.data_format == 'NCHW':
                image_shape = [
                    FLAGS.batch_size, 3, image_size + 3, image_size + 3
                ]
            else:
                image_shape = [
                    FLAGS.batch_size, image_size + 3, image_size + 3, 3
                ]
            images = tf.get_variable(
                'image',
                image_shape,
                initializer=tf.truncated_normal_initializer(
                    stddev=0.1, dtype=tf.float32),
                dtype=tf.float32,
                trainable=False)

            labels = tf.get_variable(
                'label', [FLAGS.batch_size],
                initializer=tf.constant_initializer(1),
                dtype=tf.int32,
                trainable=False)

            # Build a Graph that computes the logits predictions from the
            # inference model.
            last_layer = inference(images)

            objective = loss(last_layer, labels)
            # Compute the gradient with respect to all the parameters.

            # Compute gradients.
            # opt = tf.train.GradientDescentOptimizer(0.001)
            opt = tf.train.MomentumOptimizer(0.001, 0.9)
            grads = opt.compute_gradients(objective)
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(
                    0.0, dtype=tf.float32),
                trainable=False,
                dtype=tf.float32)
            apply_gradient_op = opt.apply_gradients(
                grads, global_step=global_step)

            # Track the moving averages of all trainable variables.
            variable_averages = tf.train.ExponentialMovingAverage(0.9,
                                                                  global_step)
            variables_averages_op = variable_averages.apply(
                tf.trainable_variables())

            # Build an initialization operation.
            init = tf.initialize_all_variables()

            # Start running operations on the Graph.
            sess = tf.Session(config=tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=FLAGS.log_device_placement))
            sess.run(init)

            run_forward = True
            run_forward_backward = True
            if FLAGS.forward_only and FLAGS.forward_backward_only:
                raise ValueError("Cannot specify --forward_only and "
                                 "--forward_backward_only at the same time.")
            if FLAGS.forward_only:
                run_forward_backward = False
            elif FLAGS.forward_backward_only:
                run_forward = False

            if run_forward:
                time_tensorflow_run(sess, last_layer, "Forward")

            if run_forward_backward:
                with tf.control_dependencies(
                    [apply_gradient_op, variables_averages_op]):
                    train_op = tf.no_op(name='train')
                time_tensorflow_run(sess, [train_op, objective],
                                    "Forward-backward")

D
dangqingqing 已提交
305 306

def main(_):
307
    run_benchmark()
D
dangqingqing 已提交
308 309 310


if __name__ == '__main__':
311
    tf.app.run()