api_impl.cc 10.2 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

L
Luo Tao 已提交
23
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
24
#include "paddle/fluid/inference/api/timer.h"
25 26 27
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
D
dzhwinter 已提交
28
using Timer = paddle::inference::Timer;
X
Xin Pan 已提交
29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace {

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

T
tensor-tang 已提交
41 42
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
43
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
44
#if !defined(_WIN32)
45 46 47 48 49 50 51 52
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
53
#endif
54

Y
Yan Chunwei 已提交
55
  if (config_.use_gpu) {
X
Xin Pan 已提交
56 57 58 59
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
60 61 62
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
63
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
64 65 66 67 68
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
69 70 71 72 73 74
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
75 76
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
87

X
Xin Pan 已提交
88
  ctx_ = executor_->Prepare(*inference_program_, 0);
89 90
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
91

X
Xin Pan 已提交
92 93 94 95 96 97
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

98
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
99
#if !defined(_WIN32)
100 101 102 103
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
104
#endif
105 106 107
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
108
}
109

Y
Yan Chunwei 已提交
110
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
111 112
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
113 114 115 116
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
117 118
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
119 120 121 122 123
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
124 125 126 127 128
    if (config_.specify_input_name) {
      feed_targets[inputs[i].name] = &feeds[i];
    } else {
      feed_targets[feed_target_names_[i]] = &feeds[i];
    }
X
Xin Pan 已提交
129 130
  }
  // get fetch variable
131 132
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
133 134 135 136 137 138
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
139
  VLOG(4) << "Run prepared context";
140
  executor_->RunPreparedContext(
141 142
      ctx_.get(), sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets, &fetch_targets,
T
tensor-tang 已提交
143
      false, /* don't create local scope each time*/
144
      false /* don't create variable eatch time */);
145
  VLOG(4) << "Finish prepared context";
X
Xin Pan 已提交
146
  if (!GetFetch(fetchs, output_data)) {
147
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
148 149 150 151 152 153
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
154
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
155
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
156 157
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

158
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
159
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
160 161
    return nullptr;
  }
162 163
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
164 165
}

Y
Yan Chunwei 已提交
166 167
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
168 169 170 171 172 173
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
174 175
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
176 177
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
178
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
179
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
180
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
181 182 183 184 185 186
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
187
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
188
                inputs[i].data.length());
Y
Yan Chunwei 已提交
189 190 191 192 193 194 195
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);

X
Xin Pan 已提交
196 197 198 199 200
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
201
bool NativePaddlePredictor::GetFetch(
202
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
244
          std::copy(output_ptr + start, output_ptr + end,
X
Xin Pan 已提交
245 246 247 248 249 250 251 252 253 254 255
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
256 257 258 259 260
    auto &buffer = outputs->at(i).data;
    if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
      buffer.Resize(sizeof(float) * data.size());
    }
    std::memcpy(buffer.data(), data.data(), buffer.length());
Y
Yan Chunwei 已提交
261 262 263 264
    // copy LoD
    for (const auto &level : fetchs[i].lod()) {
      outputs->at(i).lod.emplace_back(level);
    }
X
Xin Pan 已提交
265 266 267 268 269 270
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

271
template <>
272 273
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
274 275 276
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
277
    PADDLE_ENFORCE_GT(
278
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
279
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
280
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
281 282 283 284 285 286 287 288 289 290
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
291 292
  }

Y
Yan Chunwei 已提交
293
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
294
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
295 296
    return nullptr;
  }
297
  return std::move(predictor);
X
Xin Pan 已提交
298 299 300
}

}  // namespace paddle