kernel_dispatch.h 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21
#include "paddle/pten/api/include/tensor.h"
22
#include "paddle/pten/api/lib/backend_set.h"
23
#include "paddle/pten/api/lib/data_type_set.h"
24
#include "paddle/pten/backends/all_context.h"
25 26
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/common/layout.h"
27
#include "paddle/pten/core/selected_rows.h"
28

Y
YuanRisheng 已提交
29
// TODO(chenweihang): split Key, Kernel, Factory into diff files
30 31 32 33 34 35
#include "paddle/pten/core/kernel_factory.h"

namespace paddle {
namespace experimental {

namespace detail {
36 37
BackendSet GetTensorBackendSet(const Tensor& t);
std::size_t CountLeadingZeros(uint64_t val);
38 39
}  // namespace detail

40
pten::DeviceContext* GetDeviceContextByBackend(pten::Backend backend);
41

42 43 44 45 46
enum class KernelType {
  DENSE_TENSOR_KENREL,  // kernel for DenseTensor
  SELECTED_ROWS_KENREL  // kernel for SelectedRows
};

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
  pten::KernelKey GetHigestPriorityKernelKey() {
    return pten::KernelKey(static_cast<Backend>(64 - detail::CountLeadingZeros(
                                                         backend_set.bitset())),
                           layout,
                           dtype);
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
89 90 91
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
92 93 94 95 96 97 98 99

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
    key_set.backend_set = key_set.backend_set | detail::GetTensorBackendSet(x);
    // TODO(chenweihang): selecte multi layout and dtype
    key_set.layout = x.layout();
    key_set.dtype = x.type();
100 101 102 103 104
    dtype_set = dtype_set | DataTypeSet(x.dtype());
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
105 106
  }

107 108 109 110 111 112 113 114
  void operator()(const std::vector<Tensor>& x) {
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(x[0]);
    // TODO(chenweihang): selecte multi layout and dtype
    key_set.layout = x[0].layout();
    key_set.dtype = x[0].type();
  }

115 116 117 118 119 120 121
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
    if (pten::SelectedRows::classof(x.impl().get())) {
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

140 141 142 143 144 145 146
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

147 148 149 150 151
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

Backend ParseBackend(Backend backend);
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
  return static_cast<Backend>(64 -
                              detail::CountLeadingZeros(backend_set.bitset()));
}
Backend ParseBackendWithInputOrder(Backend backend, const Tensor& tensor);

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

172 173
}  // namespace experimental
}  // namespace paddle