PyDataProvider2.cpp 26.6 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_NO_PYTHON

#include <stdio.h>
#include <stdlib.h>
#include <unordered_set>
#include <list>

#include "DataProvider.h"
#include "paddle/utils/PythonUtil.h"

namespace paddle {

/**
 * Slot type
 */
enum SlotType {
  ST_DENSE = 0,
  ST_NON_SPARSE_VALUE = 1,
  ST_SPARSE_VALUE = 2,
  ST_INDEX = 3
};

/**
 * Sequence type
 */
enum SeqType {
  SQT_NONE = 0,
  SQT_SEQ,
  SQT_SUBSEQ
};

/**
 * Cache Type.
 */
enum CacheType {
  NO_CACHE = 0,  // Each pass will load data from PyDataProvider2.
  CACHE_PASS_IN_MEM = 1,  // First pass will load data from PyDataProvider2,
                          // then cache all data in memory. Load data from
                          // memory in rest passes.
};

struct SlotHeader {  // Slot Header will parse from python object's slots field.
  size_t dim;
  SlotType slotType;
  SeqType seqType;
};

inline std::ostream& operator << (std::ostream& os, const SlotHeader& header) {
  os <<"Dim = " << header.dim << " Type = " << header.slotType
     << " SeqType = " << header.seqType;
  return os;
}

/**
 * FieldScanner Interface.
 *
 * It will read python object, and fill to argument's each slot.
 * There are two steps, prepare and fill. Scanner will alloc memory during
 * prepare step, fill data into argument during fill step.
 */
class IFieldScanner {
public:
  DISABLE_COPY(IFieldScanner);
  /**
   * Ctor.
   * @param headerPtr slot header that scanner belong to.
   */
  explicit IFieldScanner(SlotHeader* headerPtr) : headerPtr_(headerPtr) {}
  virtual ~IFieldScanner() {}

  /**
   * Start prepare step.
   */
  virtual void startPrepare(Argument& argument) {}

  /**
   * Prepare step.
   *
   * @note the obj could be a timestep of sample or whole sample. It depends
   * what scanner it is.
   */
  virtual void prepare(Argument& argument, PyObject* obj) {}

  /**
   * Finish Prepare step.
   */
  virtual void finishPrepare(Argument& argument) {}

  /**
   * Start fill step.
   */
  virtual void startFill(Argument& argument) {}

  /**
   * Fill step.
   *
   * @note the obj could be a timestep of sample or whole sample. It depends
   * what scanner it is.
   */
  virtual void fill(Argument& argument, PyObject* obj) {}

  /**
   * Finish fill step.
   */
  virtual void finishFill(Argument& argument) {}

  /**
   * Factory method. Create a scanner by header. The final scanner may be
   * combine many scanners.
   *
   * @note Fatal if header is not support.
   */
  static IFieldScanner* create(SlotHeader* header);

protected:
  SlotHeader* headerPtr_;
};


/**
 * Py Data Provider Cache Interface.
 */
class IPyDataProviderCache {
public:
  virtual ~IPyDataProviderCache() {}

  /**
   * invoke when DataProvider::reset()
   * @return true if read data from python.
   */
  virtual bool reset() = 0;

  /**
   * invoke when these data are used by DataProvider, and need to clear.
   * @param [inout] data used data.
   *
   * @note The implemented class must clear these data array. Or if you want to
   * delete the PyObjectPtr later, you should make sure the paddle process only
   * have one active thread calling python code (use PyGuard otherwise).
   */
  virtual void drop(std::deque<PyObjectPtr>* data) = 0;

  /**
   * Return whole data in cache.
   */
  virtual std::deque<PyObjectPtr>* load() = 0;

  /**
   * Factory method. Convert CacheType to IPyDataProviderCache*
   */
  static IPyDataProviderCache* create(CacheType ct);
};

/**
 * PyDataProvider2.
 *
 * For usage, please refer python module 'paddle.trainer.PyDataProvider2'
 *
 * Here, we start a thread to read data. It is totally asynchronous for reading
 * data. And it support cache strategies.
 */
class PyDataProvider2 : public DataProvider {
public:
  /**
   * Ctor
   */
  PyDataProvider2(const DataConfig& config,
                  bool useGpu)
    :DataProvider(config, useGpu), callingContextCreated_(2) {
    auto& args = config.load_data_args();
    PyObjectPtr kwargs = PyObjectPtr(PyDict_New());
    if (!args.empty()) {
      kwargs = callPythonFuncRetPyObj(
            "paddle.trainer.PyDataProvider2",
            "deserialize_args",
            {args});
    }

    py::DictHelper kwargsDict(kwargs);
    kwargsDict.setBool("is_train", !config.for_test());

    // kwargs is keyword arguemts to create object.
    this->createPyDataObj(config.load_data_module(),
                          config.load_data_object(),
                          config.files(),
                          std::move(kwargs));
    DBG << "Instance " << instance_.get() << " loaded.";
    this->readPyFields();
    DBG << "Py Field Done";
  }

  /**
   * Dtor
   * @note will stop loading thread when destructing
   */
  virtual ~PyDataProvider2() {
    resetImpl(false);
  }

private:
  void createPyDataObj(const std::string& model,
                       const std::string& className,
                       const std::string& fileListName,
                       PyObjectPtr && kwargs) {
    LOG(INFO) << "loading dataprovider " << model <<"::" << className;

    PyObjectPtr module(PyImport_ImportModule(model.c_str()));
    CHECK_PY(module) << "Cannot imort module " << model.c_str();
    PyObjectPtr moduleDict(PyModule_GetDict(module.get()));
    CHECK_PY(moduleDict) << "Invoke module.__dict__ error";
    PyObjectPtr cls(PyDict_GetItemString(moduleDict.get(),
                                         className.c_str()));
    CHECK_PY(cls) << "load class " << className.c_str() << "error";

    // If there are multiple python instance share same module, the PyObjectPtr
    // only for instance will make python reference-count error.
    //
    // So here, we increase reference count manually.
    if (gModuleClsPtrs_.find((uintptr_t) module.get())
        != gModuleClsPtrs_.end()) {
      // Multi instance use same module
      Py_XINCREF(module.get());
      Py_XINCREF(moduleDict.get());
    } else {
      gModuleClsPtrs_.insert((uintptr_t) module.get());
    }
    if (gModuleClsPtrs_.find((uintptr_t) cls.get()) != gModuleClsPtrs_.end()) {
      Py_XINCREF(cls.get());
    } else {
      gModuleClsPtrs_.insert((uintptr_t) cls.get());
    }

    PyObjectPtr fileListInPy = loadPyFileLists(fileListName);
    PyDict_SetItemString(kwargs.get(), "file_list", fileListInPy.get());
    {
      PyGuard guard;
      instance_.reset(PyObject_Call(cls.get(), zeroTuple_.get(), kwargs.get()));
    }
    CHECK_PY(instance_) << "Cannot Create instance";
  }

  void readPyFields() {
    py::ObjectHelper self(this->instance_);
    this->skipShuffle_ = !self.getBoolAttr("should_shuffle");
    bool ok;
    this->poolSize_ = self.getIntAttr<size_t>("pool_size", &ok);
    if (!ok) {
      this->poolSize_ = -1UL;
    }
    this->canOverBatchSize_ = self.getBoolAttr("can_over_batch_size");

    calcBatchSize_.reset(self.getAttr("calc_batch_size"));
    if (this->calcBatchSize_ && !py::isCallable(this->calcBatchSize_)) {
      this->calcBatchSize_.reset();
    }

    generator_.reset(self.getAttr("generator"));
    CHECK(py::isCallable(generator_));

    // Reading slots.
    PyObjectPtr slotsPtr(self.getAttr("slots"));
    py::SequenceHelper slots(slotsPtr);
    headers_.reserve(slots.size());
    for (size_t i = 0; i < slots.size(); ++i) {
      headers_.emplace_back();
      auto& header = headers_.back();
      PyObject* hdPtr = slots[i];
      CHECK(hdPtr != nullptr);
      Py_XINCREF(hdPtr);
      PyObjectPtr headerPtrWrap(hdPtr);
      py::ObjectHelper hd(headerPtrWrap);
      header.dim = hd.getIntAttrWithError<size_t>("dim");
      header.seqType = (SeqType) hd.getIntAttrWithError<int>("seq_type");
      header.slotType = (SlotType) hd.getIntAttrWithError<int>("type");
    }

    DBG << "Data header size " << headers_.size();
    for (auto & header : headers_) {
      DBG << header;
    }
    cache_.reset(IPyDataProviderCache::create(
        (CacheType)self.getIntAttrWithError<int>("cache")));
  }

  PyObjectPtr loadPyFileLists(const std::string& fileListName) {
    loadFileList(fileListName, fileLists_);
    PyObject* lst = PyList_New(fileLists_.size());
    for (size_t i = 0; i < fileLists_.size(); ++i) {
      PyList_SET_ITEM(lst, i,
                      PyString_FromString(fileLists_[i].c_str()));
    }
    return PyObjectPtr(lst);
  }

  void loadThread() {
    callingContexts_.reserve(fileLists_.size());
    DBG << "Creating context";
    for (auto& filename : fileLists_) {
      PyGuard g;
      py::CallableHelper generator(this->generator_);
      generator.setArgsSize(2);
      generator.getArgs().set(0, instance_);
      generator.getArgs().set(1, PyString_FromString(filename.c_str()), true);
      callingContexts_.emplace_back(generator());
      CHECK_PY(callingContexts_.back()) << "Generator error.";
      CHECK(PyIter_Check(callingContexts_.back()));
    }
    DBG << "Create context done";
    callingContextCreated_.wait();

    PositionRandom p(skipShuffle_);

    while (!exit_ && !callingContexts_.empty()) {
      PyObject* data = nullptr;

      {  // Read data.
        size_t cid = p(callingContexts_.size());
        bool atEnd;
        data = py::iterNext(callingContexts_[cid], &atEnd);
        if (atEnd || data == nullptr) {
          callingContexts_.erase(callingContexts_.begin() + cid);
          this->pullCV_.notify_all();
          continue;
        }
      }

      size_t additionalBatchSize = 1;
      if (calcBatchSize_) {
        py::CallableHelper calcBatchSize(this->calcBatchSize_);
        calcBatchSize.setArgsSize(1);
        calcBatchSize.getArgs().set(0, data);
        PyObjectPtr bs(calcBatchSize());
        CHECK_PY(bs);
        bool ok;
        additionalBatchSize = py::castInt<size_t>(bs.get(), &ok);
        CHECK(ok) << "CalcBatchSize must return int or long";
      }

      if (this->loadThread_){  // wait poolActualSize < poolSize;
        std::unique_lock<std::mutex> l(mtx_);
        pushCV_.wait(l, [this, additionalBatchSize] {
          if (this->canOverBatchSize_) {
            return this->poolActualSize_ < poolSize_;
          } else {
            return this->poolActualSize_ + additionalBatchSize < poolSize_;
          }
        });
      }

      {
        std::lock_guard<std::mutex> guard(mtx_);
        poolActualSize_ += additionalBatchSize;
        dataPool_.emplace_back(data);
      }

      {
        pullCV_.notify_all();
      }
    }
    DBG << "load thread end";
  }

  inline void resetImpl(bool startNewThread) {
    DBG << "Reseting " << startNewThread;
    if (loadThread_) {  // is loading.
      exit_.store(true);
      loadThread_->join();
      loadThread_.reset();
    }
    {
      PyGuard g;
      callingContexts_.clear();
      dataPool_.clear();
    }
    poolActualSize_ = 0;
    exit_ = false;
    if (startNewThread && cache_->reset()) {
      DBG << "Start new thread.";
      loadThread_.reset(new std::thread([this] {
        loadThread();
      }));
      callingContextCreated_.wait();
    }
    DBG << "Reset done";
  }

private:
  std::unique_ptr<std::thread> loadThread_;
  std::atomic<bool> exit_;
  std::vector<PyObjectPtr> callingContexts_;
  std::deque<PyObjectPtr> dataPool_;
  size_t poolActualSize_;
  std::condition_variable pushCV_;
  std::condition_variable pullCV_;
  std::mutex mtx_;
  ThreadBarrier callingContextCreated_;
  std::unique_ptr<IPyDataProviderCache> cache_;

  PyObjectPtr instance_;
  size_t poolSize_;
  bool canOverBatchSize_;
  PyObjectPtr calcBatchSize_;
  PyObjectPtr generator_;
  std::vector<std::string> fileLists_;
  std::vector<SlotHeader> headers_;
  static PyObjectPtr zeroTuple_;
  static std::unordered_set<uintptr_t > gModuleClsPtrs_;

  class PositionRandom {
  public:
    inline explicit PositionRandom(bool skipRand):
        eng_(ThreadLocalRandomEngine::get()), skipRand_(skipRand) {}

    inline size_t operator() (size_t len) {
      if (!skipRand_) {
        if (!dist_ || dist_->b() != len - 1) {
          dist_.reset(new std::uniform_int_distribution<size_t>(0, len - 1));
        }
        return (*dist_)(eng_);
      } else {
        return 0;
      }
    }

  private:
    std::default_random_engine& eng_;
    std::unique_ptr<std::uniform_int_distribution<size_t>> dist_;
    bool skipRand_;
  };

  // DataProvider interface
public:
  /**
   * Resetting the PyDataProvider. May start reading thread here.
   */
  virtual void reset() {
    DataProvider::reset();
    resetImpl(true);
  }

  /**
   * Shuffle. Do nothing because PyDataProvider do shuffle implicitly by random
   * select data from datapool.
   */
  void shuffle() {
  }

  /**
   * Not limited size.
   */
  int64_t getSize() {
    return -1;
  }

  /**
   * Loading a batch of data.
   */
  int64_t getNextBatchInternal(int64_t size_, DataBatch *batch) {
    CHECK_GE(size_, 0);
    size_t size = (size_t) size_;
    if (loadThread_) {  // loading from thread should wait for data pool ready.
                        // but, loading from cache, cache object should ensure
                        // data pool ready.
      std::unique_lock<std::mutex> l(mtx_);
      pullCV_.wait(l, [this, &size] {
        return this->poolActualSize_ >= size || callingContexts_.empty();
      });
    }
    std::deque<PyObjectPtr> data;
    size_t bsize = 0;
    std::deque<PyObjectPtr>* poolPtr = nullptr;

    if (this->loadThread_) {  // loading from thread.
      poolPtr = &this->dataPool_;
    } else {  // loading from cache.
      poolPtr = this->cache_->load();
    }
    CHECK(poolPtr != nullptr);

    std::deque<PyObjectPtr>& pool = *poolPtr;

    while (bsize < size && !pool.empty()) {
      {  // move data from pool to data
        std::lock_guard<std::mutex> guard(mtx_);
        if (skipShuffle_) {
          size_t i = 0;
          CHECK(pool[i] != nullptr);
          data.emplace_back(std::move(pool[i]));
          pool.pop_front();
        } else {  // when shuffle, use swap to drop only last pool element.
          size_t i = ThreadLocalRand::rand() % pool.size();
          CHECK(pool[i] != nullptr);
          if (i != pool.size() - 1) {
            std::swap(pool[i], pool.back());
          }
          data.emplace_back(std::move(pool.back()));
          pool.pop_back();
        }
      }
      {
        if (calcBatchSize_) {  // custom calc batch size.
          Py_INCREF(data.back().get());
          py::CallableHelper calcBatchSize(calcBatchSize_);
          calcBatchSize.setArgsSize(1);
          calcBatchSize.getArgs().set(0, data.back());
          PyObjectPtr customBatchSize(calcBatchSize());
          bool ok;
          bsize += py::castInt<size_t>(customBatchSize.get(), &ok);
          CHECK(ok) << "calc_batch_size must return int";
        } else {
          bsize += 1;
        }
      }
    }

    if (this->loadThread_) {
      {
        std::lock_guard<std::mutex> g(mtx_);
        poolActualSize_ -= bsize;
      }
      this->pushCV_.notify_all();
    }

    if (bsize == 0) {  // end of pass. In data pool, cannot get any data.
      return 0;
    }

    DataBatch cpuBatch;
    cpuBatch.setSize(bsize);
    auto& inArgs = cpuBatch.getStreams();
    inArgs.resize(headers_.size());
    std::vector<std::unique_ptr<IFieldScanner> > scanners;
    scanners.reserve(headers_.size());
    for (auto& header : headers_) {
      scanners.emplace_back(IFieldScanner::create(&header));
    }
    DBG << "Scanner created.";
    for (size_t i=0; i < headers_.size(); ++i) {
      scanners[i]->startPrepare(inArgs[i]);
    }
    for (auto & d : data) {
      py::SequenceHelper s(d);
      for (size_t i=0; i < headers_.size(); ++i) {
        scanners[i]->prepare(inArgs[i], s[i]);
      }
    }
    for (size_t i=0; i < headers_.size(); ++i) {
      scanners[i]->finishPrepare(inArgs[i]);
    }
    for (size_t i=0; i < headers_.size(); ++i) {
      scanners[i]->startFill(inArgs[i]);
    }
    for (auto & d : data) {
      py::SequenceHelper s(d);
      for (size_t i = 0; i < headers_.size(); ++i) {
        scanners[i]->fill(inArgs[i], s[i]);
      }
    }

    for (size_t i=0; i < headers_.size(); ++i) {
      scanners[i]->finishFill(inArgs[i]);
    }

    DBG << "Reading CPU Batch Done.";

    if (useGpu_) {
      std::vector<Argument>& cpuArguments = cpuBatch.getStreams();
      DataBatch& gpuBatch = *batch;
      std::vector<Argument>& gpuArguments = gpuBatch.getStreams();
      gpuArguments.resize(cpuArguments.size());
      gpuBatch.setSize(size);
      for (size_t i = 0; i < headers_.size(); ++i) {
        gpuArguments[i].resizeAndCopyFrom(cpuArguments[i], useGpu_,
                                          HPPL_STREAM_1);
      }
      hl_stream_synchronize(HPPL_STREAM_1);
    } else {
      *batch = cpuBatch;
    }

    {
      PyGuard g;
      cache_->drop(&data);
    }
    return bsize;
  }
};

std::unordered_set<uintptr_t > PyDataProvider2::gModuleClsPtrs_;
PyObjectPtr PyDataProvider2::zeroTuple_(PyTuple_New(0));

REGISTER_DATA_PROVIDER(py2, PyDataProvider2);

/**
 * Scanner for dense slot.
 */
class DenseScanner: public IFieldScanner {
public:
  explicit DenseScanner(SlotHeader* ptr):IFieldScanner(ptr), height_(0) {}

  /**
   * Prepare.
   * @param argument target argument
   * @param obj each timestep of a sample.
   */
  virtual void prepare(Argument &argument, PyObject *obj) {
    ++height_;
  }

  virtual void finishPrepare(Argument &argument) {
    Matrix::resizeOrCreate(argument.value, height_, headerPtr_->dim,
                           false, false);
    height_ = 0;
  }

  /**
   * Fill argument from obj.
   * @param argument
   * @param obj
   */
  virtual void fill(Argument &argument, PyObject *obj) {
    real* dat = argument.value->getData() + height_ * headerPtr_->dim;
    py::SequenceHelper s(obj);
    // TODO(yuyang18): Here we can use AVX or SSE to accelerate memory copy.
    for (size_t i=0; i < headerPtr_->dim; ++i) {
      dat[i] = (real) s.getDouble(i);
    }
    ++height_;
  }

private:
  size_t height_;
};

/**
 * Scanner for index slot
 */
class IndexScanner: public IFieldScanner {
public:
  explicit IndexScanner(SlotHeader* ptr):IFieldScanner(ptr), cnt_(0) {}

  /**
   * Prepare memory space.
   *
   * @note obj is a single timestep of sample
   */
  virtual void prepare(Argument &argument, PyObject *obj) {
    ++cnt_;
  }

  virtual void finishPrepare(Argument &argument) {
    IVector::resizeOrCreate(argument.ids, cnt_, false);
    cnt_ = 0;
  }

  /**
   * Fill one index to argument.
   */
  virtual void fill(Argument &argument, PyObject *obj) {
    bool ok;
    argument.ids->getData()[cnt_++] = py::castInt<int >(obj, &ok);
    CHECK(ok) << "Cannot cast int " << py::repr(obj);
  }

private:
  size_t cnt_;
};

class SparseNonValueScanner : public IFieldScanner {
public:
  explicit SparseNonValueScanner(SlotHeader* ptr): IFieldScanner(ptr),
                                                   nnz_(0),
                                                   height_(0) {}

  /**
   * Prepare memory space
   * @note obj is a timestep of one sample.
   */
  virtual void prepare(Argument &argument, PyObject *obj) {
    ++height_;
    nnz_ += py::SequenceHelper(obj).size();
  }

  virtual void finishPrepare(Argument &argument) {
    Matrix::resizeOrCreateSparseMatrix(argument.value, height_,
                                       headerPtr_->dim,
                                       nnz_, NO_VALUE);
  }

  virtual void startFill(Argument & argument) {
    auto smat = (CpuSparseMatrix*) (argument.value.get());
    smat->getRows()[0] = 0;
    nnz_ = 0;
    height_ = 1;
  }

  /**
   * Fill one sparse vector to argument.
   * @note obj is a timestep of one sample.
   */
  virtual void fill(Argument& argument, PyObject* obj) {
    py::SequenceHelper s(obj);
    auto sz = s.size();
    auto smat = (CpuSparseMatrix*) (argument.value.get());
    int* row = smat->getRows();
    int* col = smat->getCols();
    real* dat = smat->getData();
    row[height_] = row[height_-1] + (int)sz;

    for (decltype(sz) i = 0; i < sz; ++i) {
      setData(col+nnz_, dat+nnz_, s[i]);
      ++nnz_;
    }
    ++height_;
  }

protected:
  /**
   * Set a single sparse index and value.
   * @param [out] col sparse index
   * @param [out] dat sparse value
   * @param [in] obj Python Object. For sparse_non_value is a PyInt or PyLong.
   *                 For sparse_value is a Tuple (int, float).
   */
  virtual void setData(int* col, real * dat, PyObject* obj) {
    bool ok;
    *col = py::castInt<int>(obj, &ok);
    CHECK(ok);
  }

  size_t nnz_;
  size_t height_;
};

class SparseValueScanner : public SparseNonValueScanner {
public:
  explicit SparseValueScanner(SlotHeader *ptr) : SparseNonValueScanner(ptr) {}

  virtual void finishPrepare(Argument &argument) {
    Matrix::resizeOrCreateSparseMatrix(argument.value, height_,
                                       headerPtr_->dim,
                                       nnz_, FLOAT_VALUE);
  }

protected:
  virtual void setData(int *col, real *dat, PyObject *obj) {
    py::SequenceHelper s(obj);
    SparseNonValueScanner::setData(col, dat, s[0]);
    *dat = (real) s.getDouble(1);
  }
};

/**
 * Sequence Scanner. Scanner for sequence or sub-sequence.
 */
class SequenceScanner: public IFieldScanner {
public:
  /**
   * Ctor
   * @param innerScanner inner scanner for each timestep or sub-sequence.
   * @param getSeqStartPos A callback, (Argument) => ICpuGpuVectorPtr.
   *                       return a sequence start position or a sub-sequence
   *                       start position.
   */
  SequenceScanner(std::unique_ptr<IFieldScanner>&& innerScanner,
    const std::function<ICpuGpuVectorPtr&(Argument&)>& getSeqStartPos)
      : IFieldScanner(nullptr), inner_(std::move(innerScanner)),
        cnt_(0), getSeqStartPos_(getSeqStartPos) {}

  /**
   * Start prepare. Invoke inner->startPrepare too.
   */
  virtual void startPrepare(Argument &argument) {
    inner_->startPrepare(argument);
  }

  /**
   * Prepare. obj is a list or tuple. it will invoke inner_->prepare for each
   * element of sequence obj.
   */
  virtual void prepare(Argument &argument, PyObject *obj) {
    py::SequenceHelper s(obj);
    ++cnt_;
    for (size_t i=0; i < s.size(); ++i) {
      inner_->prepare(argument, s[i]);
    }
  }

  /**
   * Finish prepare. invoke inner_->finishPrepare too.
   */
  virtual void finishPrepare(Argument &argument) {
    ICpuGpuVector::resizeOrCreate(getSeqStartPos_(argument), cnt_ + 1, false);
    inner_->finishPrepare(argument);
  }

  /**
   * Start fill. invoke inner->startFill too.
   */
  virtual void startFill(Argument &argument) {
    getSeqStartPos_(argument)->getMutableData(false)[0] = 0;
    cnt_ = 1;
    inner_->startFill(argument);
  }

  /**
   * Fill. Obj is a tuple or list. invoke inner->fill for each element of
   * sequence obj. And set seqStartPos at same time. The seqStartPos will be
   * calculated by getSeqStartPos callback passed in ctor.
   */
  virtual void fill(Argument &argument, PyObject *obj) {
    getSeqStartPos_(argument)->getMutableData(false)[cnt_] =
      getSeqStartPos_(argument)->getMutableData(false)[cnt_ - 1] +
          (int)getSize(obj);
    py::SequenceHelper s(obj);
    ++cnt_;
    for (size_t i=0; i < s.size(); ++i) {
      inner_->fill(argument, s[i]);
    }
  }

  /**
   * Finish fill. will invoke inner->finishFill too.
   */
  virtual void finishFill(Argument &argument) {
    inner_->finishFill(argument);
  }

protected:
  size_t getSize(PyObject* obj) {
    py::SequenceHelper s(obj);
    auto sc = dynamic_cast<SequenceScanner*>(inner_.get());
    if (sc) {
      size_t sum = 0;
      for (size_t i=0; i < s.size(); ++i) {
        sum += sc->getSize(s[i]);
      }
      return sum;
    } else {
      return s.size();
    }
  }

private:
  std::unique_ptr<IFieldScanner> inner_;
  size_t cnt_;
  std::function<ICpuGpuVectorPtr&(Argument&)> getSeqStartPos_;
};


IFieldScanner* IFieldScanner::create(SlotHeader *header) {
  IFieldScanner* retv = nullptr;
  switch (header->slotType) {
    case ST_DENSE:
      retv = new DenseScanner(header);
      break;
    case ST_INDEX:
      retv = new IndexScanner(header);
      break;
    case ST_NON_SPARSE_VALUE:
      retv = new SparseNonValueScanner(header);
      break;
    case ST_SPARSE_VALUE:
      retv = new SparseValueScanner(header);
      break;
    default:
      LOG(FATAL) << "Not implemented " << header->slotType;
  }

  switch (header->seqType) {
    case SQT_NONE:
      break;
    case SQT_SUBSEQ:
      retv = new SequenceScanner(std::unique_ptr<IFieldScanner>(retv),
            [](Argument& arg) -> ICpuGpuVectorPtr& {
              return arg.subSequenceStartPositions;
            });
      // fall through, not break;
    case SQT_SEQ:
      retv = new SequenceScanner(std::unique_ptr<IFieldScanner>(retv),
          [](Argument& arg) -> ICpuGpuVectorPtr& {
            return arg.sequenceStartPositions;
          });
      break;
    default:
      LOG(FATAL) << "Not implemented";
  }

  return retv;
}

/**
 * No Cache Strategy. Will destruct old data immediately and load data from
 * python every pass.
 */
class NoCacheStrategy: public IPyDataProviderCache {
public:
  virtual bool reset() {
    return true;
  }

  virtual void drop(std::deque<PyObjectPtr> *data) {
    data->clear();
  }

  virtual std::deque<PyObjectPtr>* load() {
    return nullptr;
  }
};

/**
 * Cache One Pass In Memory strategy.
 *
 * In first pass, will load data from python and store them in memory.
 * The rest passes, will load data from memory.
 */
class CacheOnePassInMemory : public IPyDataProviderCache {
public:
  CacheOnePassInMemory() : objPool_(new std::deque<PyObjectPtr>()),
                           droppedPool_(new std::deque<PyObjectPtr>())
  {}

  virtual bool reset() {
    if (objPool_->empty() && droppedPool_->empty()) {
      return true;
    } else if (objPool_->empty()) {
      std::swap(objPool_, droppedPool_);
      return false;
    } else {
      LOG(FATAL) << "Unexpected branch";
    }
  }

  virtual void drop(std::deque<PyObjectPtr> *data) {
    size_t orgSize = droppedPool_->size();
    droppedPool_->resize(orgSize + data->size());
    for (size_t i=0; i < data->size(); ++i) {
      std::swap((*droppedPool_)[orgSize + i], (*data)[i]);
    }
    data->clear();
  }

  virtual std::deque<PyObjectPtr>* load() {
    return objPool_.get();
  }

private:
  std::unique_ptr<std::deque<PyObjectPtr> > objPool_;
  std::unique_ptr<std::deque<PyObjectPtr> > droppedPool_;
};


IPyDataProviderCache* IPyDataProviderCache::create(CacheType ct) {
  switch (ct) {
    case NO_CACHE:
      return new NoCacheStrategy();
    case CACHE_PASS_IN_MEM:
      return new CacheOnePassInMemory();
    default:
      LOG(FATAL) << "Not implemented";
  }
}
}  // namespace paddle

#endif