engine.h 14.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
N
nhzlx 已提交
26
#include "paddle/fluid/framework/tensor.h"
27
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
28
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
29 30
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
31
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
35 36 37 38 39

namespace paddle {
namespace inference {
namespace tensorrt {

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at least 2 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
    return nvinfer1::DimsCHW(shape[1], 1, 1);
  } else {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsNCHW(shape[0], shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
    return nvinfer1::Dims4(shape[0], shape[1], 1, 1);
  }
}
}  // NOLINT

N
nhzlx 已提交
91
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
92 93 94 95
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
96
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
97
 */
98 99
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
100
  using ShapeMapType = std::map<std::string, std::vector<int>>;
101

Y
Yan Chunwei 已提交
102 103 104 105
 public:
  // Weight is model parameter.
  class Weight {
   public:
106
    Weight() = default;
107
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
108 109 110 111
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
112
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
113

114 115
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
116 117 118 119
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
120 121 122 123
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
124 125 126
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
127
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
128
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
129 130
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
131
        precision_(precision),
N
nhzlx 已提交
132
        calibrator_(calibrator),
N
nhzlx 已提交
133
        device_id_(device_id),
134 135 136
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
137
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
  }
Y
Yan Chunwei 已提交
161

162
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
163

164
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
165 166 167 168 169 170 171
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
172 173
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
174

L
Luo Tao 已提交
175 176 177
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
178 179

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
180 181 182 183 184 185 186 187 188 189 190 191
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
192 193 194 195 196 197 198 199 200

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
201
    freshDeviceId();
N
nhzlx 已提交
202
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
P
Pei Yang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          nullptr));
#else

      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "To enable dynamic shape support, the TensorRT version should be "
          "greater than 6.0.0"));

#endif
    } else {
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
    }
N
nhzlx 已提交
220 221 222 223
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
  }

224 225
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
226 227 228 229 230 231 232

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
233
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
234
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
235
                                    int num_inputs, plugin::PluginTensorRT*);
236 237 238 239 240 241 242
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
243 244 245 246 247 248 249 250

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
251

252 253 254 255 256 257
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
258 259
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
260 261 262
    suffix_counter += 1;
  }

263 264 265 266 267 268
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

  nvinfer1::INetworkDefinition* network() {
    if (with_dynamic_shape_) {
      return infer_networkv2_.get();
    } else {
      return infer_network_.get();
    }
  }

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
290
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
291 292
  bool with_dynamic_shape() { return with_dynamic_shape_; }

293 294 295 296 297 298 299 300 301
#if IS_TRT_VERSION_GE(6000)
  nvinfer1::IPluginV2Layer* AddPluginV2(nvinfer1::ITensor* const* inputs,
                                        int num_inputs,
                                        plugin::DynamicPluginTensorRT* plugin) {
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

Y
Yan Chunwei 已提交
302
 private:
N
nhzlx 已提交
303 304 305 306 307
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
308 309
  // the max batch size
  int max_batch_;
310 311
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
312 313
  // the max memory size the engine uses
  int max_workspace_;
314

Z
Zhaolong Xing 已提交
315
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
316 317 318
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
319

N
nhzlx 已提交
320
  int device_id_;
321 322 323
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
324
  bool disable_trt_plugin_fp16_{false};
Y
Yan Chunwei 已提交
325 326 327
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
328 329
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
330

331
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
332 333 334 335

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
336 337 338 339 340
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
341 342 343 344 345 346
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
347 348
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
349
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
350
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
351 352 353 354 355 356

  // For dynamic shape
  bool with_dynamic_shape_{false};
  infer_ptr<nvinfer1::INetworkDefinition> infer_networkv2_;
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
357
  nvinfer1::IOptimizationProfile* optim_profile_;
358
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
359
#endif
360
  std::mutex mutex_;
Y
Yan Chunwei 已提交
361 362
};  // class TensorRTEngine

363
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
364 365 366 367 368 369 370 371 372
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
373 374
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
375

376 377 378 379 380 381 382 383 384 385 386 387
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
388 389 390 391
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
392 393 394
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
395
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
396
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
397 398 399 400
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
401 402 403 404 405 406 407 408 409 410 411 412 413 414
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
415 416 417
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle