tensor_method.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/tensor_base.h"

21
#include "paddle/phi/api/include/context_pool.h"
22
#include "paddle/phi/api/include/sparse_api.h"
23 24
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
25
#include "paddle/phi/core/tensor_utils.h"
26 27
#include "paddle/phi/infermeta/unary.h"

28 29 30 31
namespace paddle {
namespace experimental {
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);
32
Tensor copy_to(const Tensor &x, const Place &place, bool blocking);
33 34 35 36 37

Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
}

38
Tensor Tensor::copy_to(const Place &place, bool blocking) const {
39
  return experimental::copy_to(*this, place, blocking);
40 41 42
}

template <typename T>
43
Tensor Tensor::copy_to(const Place &target_place) const {
44 45 46 47 48 49
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor's `copy_to` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`copy_to` method without template argument instead. "
         "reason: copying a Tensor to another device does not need "
         "to specify the data type template argument.";
50
  return copy_to(target_place, /*blocking=*/false);
51 52 53
}

template PADDLE_API Tensor
54
Tensor::copy_to<float>(const Place &target_place) const;
55
template PADDLE_API Tensor
56
Tensor::copy_to<double>(const Place &target_place) const;
57
template PADDLE_API Tensor
58
Tensor::copy_to<int64_t>(const Place &target_place) const;
59
template PADDLE_API Tensor
60
Tensor::copy_to<int32_t>(const Place &target_place) const;
61
template PADDLE_API Tensor
62
Tensor::copy_to<uint8_t>(const Place &target_place) const;
63
template PADDLE_API Tensor
64
Tensor::copy_to<int8_t>(const Place &target_place) const;
65
template PADDLE_API Tensor
66
Tensor::copy_to<int16_t>(const Place &target_place) const;
67
template PADDLE_API Tensor
68
Tensor::copy_to<bool>(const Place &target_place) const;
69
template PADDLE_API Tensor
70 71 72 73 74
Tensor::copy_to<phi::dtype::complex<float>>(const Place &target_place) const;
template PADDLE_API Tensor
Tensor::copy_to<phi::dtype::complex<double>>(const Place &target_place) const;
template PADDLE_API Tensor
Tensor::copy_to<phi::dtype::float16>(const Place &target_place) const;
75

76 77 78
void Tensor::copy_(const Tensor &src,
                   const phi::Place &target_place,
                   bool blocking) {
79
  if (!src.initialized()) {
80
    VLOG(8) << "Src is empty, skip copy";
81 82
    return;
  }
83 84 85
  // Prepare copy kernel key and outputs
  auto kernel_key_set = ParseKernelKeyByInputArgs(src);
  KernelType kernel_type = ParseKernelTypeByInputArgs(src);
86
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
87
  if (initialized()) {
88 89
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
90
                      phi::errors::PreconditionNotMet(
91 92 93 94 95 96
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
J
Jiabin Yang 已提交
97
                      phi::errors::PreconditionNotMet(
98 99 100 101
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
102
    PADDLE_ENFORCE_EQ(target_place,
C
Chen Weihang 已提交
103
                      place(),
J
Jiabin Yang 已提交
104
                      phi::errors::PreconditionNotMet(
105 106 107
                          "Place is different of dst tensor and args %s, which "
                          "current tensor holds %s "
                          "Copy cannot be performed!",
J
Jiabin Yang 已提交
108
                          target_place,
C
Chen Weihang 已提交
109 110 111
                          place()));
    kernel_key_set.backend_set = kernel_key_set.backend_set |
                                 BackendSet(phi::TransToPhiBackend(place()));
112 113 114 115
  } else {
    // Deep Copy AutoGrad info from src to self.
    *autograd_meta_ = *(src.autograd_meta_);
  }
116 117
  kernel_key_set.backend_set = kernel_key_set.backend_set |
                               BackendSet(phi::TransToPhiBackend(target_place));
118
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
119
  auto place = phi::TransToPhiPlace(kernel_key.backend());
120 121
  auto &pool = paddle::experimental::DeviceContextPool::Instance();
  auto *dev_ctx = pool.GetMutable(
122 123
      place.GetType() == target_place.GetType() ? target_place : place);

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  if (kernel_type == KernelType::DENSE_TENSOR_KENREL) {
    SetKernelOutput(kernel_backend, this);
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::DenseTensor>(src.impl_))),
        &meta_out);
149 150 151 152 153
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::DenseTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::DenseTensor *>(impl_.get()));
154 155 156 157 158 159 160
  } else if (kernel_type == KernelType::SELECTED_ROWS_KENREL) {
    SetSelectedRowsKernelOutput(kernel_backend, this);
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::SelectedRows>(src.impl_))),
        &meta_out);
161 162 163 164 165
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SelectedRows>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SelectedRows *>(impl_.get()));
166
  } else if (kernel_type == KernelType::SPARSE_COO_KERNEL) {
167 168 169 170 171 172 173
    SetSparseKernelOutput(this, TensorType::SPARSE_COO);
    // TODO(zhangkaihuo) add sparse infer_meta
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SparseCooTensor *>(impl_.get()));
174
  } else if (kernel_type == KernelType::SPARSE_CSR_KERNEL) {
175 176 177 178 179 180 181
    SetSparseKernelOutput(this, TensorType::SPARSE_CSR);
    // TODO(zhangkaihuo) add sparse infer_meta
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SparseCsrTensor *>(impl_.get()));
182
  } else {
J
Jiabin Yang 已提交
183
    PADDLE_THROW(phi::errors::InvalidArgument(
184 185
        "We currently only support dense tensor copy for now and if u need to "
        "copy selected rows please raise a issue."));
186 187 188
  }
}

189 190 191 192 193 194 195 196 197 198 199 200
Tensor Tensor::to_sparse_coo(const int64_t sparse_dim) const {
  return experimental::sparse::to_sparse_coo(*this, sparse_dim);
}

Tensor Tensor::to_sparse_csr() const {
  return experimental::sparse::to_sparse_csr(*this);
}

Tensor Tensor::to_dense() const {
  return experimental::sparse::to_dense(*this);
}

201 202
}  // namespace experimental
}  // namespace paddle