MKLDNNTester.cpp 12.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {

// init data layer and test layer of both dnn and reference
22
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  refLayer_ = testLayers_[REF];
67 68 69 70
  dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]);
  CHECK(dnnLayer_);
  // for comparison with Paddle reference results,
  // need manually add cpu device output for test
71
  dnnLayer_->addOutputArgument(CPU_DEVICE);
T
tensor-tang 已提交
72 73 74 75 76 77
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());

  setInputImgSize();
}

78
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
89
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
103
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

114
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
115
  refLayer_->getOutputGrad()->randomizeUniform();
116 117
  dnnLayer_->getOutput(CPU_DEVICE)
      .grad->copyFrom(*(refLayer_->getOutputGrad()));
118
  VLOG(lvl_) << "Random Backward Input, TopDiff: ";
T
tensor-tang 已提交
119 120 121
  printMatrix(refLayer_->getOutputGrad());
}

122
void MKLDNNTester::checkForward() {
T
tensor-tang 已提交
123
  VLOG(MKLDNN_ALL) << "Check Forward";
124 125 126
  printTopDatas();
  double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
                               refLayer_->getOutputValue());
T
tensor-tang 已提交
127 128 129
  EXPECT_LE(fabs(delta), eps_);
}

130
void MKLDNNTester::checkBackwardData() {
131
  VLOG(MKLDNN_ALL) << "Check Backward Data";
T
tensor-tang 已提交
132 133
  // TODO(TJ): uncomment me when batch norm ready
  // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
T
tensor-tang 已提交
134 135 136 137 138 139 140 141 142 143
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
T
tensor-tang 已提交
144 145 146 147 148
    // TODO(TJ): uncomment me when batch norm ready
    // if (isBN) {
    //  // the other two inputs in batch norm are for moving mean and var
    //  break;
    // }
T
tensor-tang 已提交
149 150 151
  }
}

152
void MKLDNNTester::checkBackwardWgts() {
153
  VLOG(MKLDNN_ALL) << "Check Backward Weight";
T
tensor-tang 已提交
154 155 156 157
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

158
  dnnLayer_->convertWeightsToPaddle();
T
tensor-tang 已提交
159 160 161 162 163 164 165 166 167 168 169 170
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
171
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
172 173 174
  restoreWgt(dnnWgts, parameters_[DNN]);
}

175
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
176 177 178 179 180 181 182 183 184 185
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

186
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
187 188 189 190 191 192 193 194 195
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
196 197
void MKLDNNTester::clearWgtDiffs(size_t id) {
  CHECK_LE(id, parameters_.size());
T
tensor-tang 已提交
198
  for (size_t n = 0; n < parameters_.size(); ++n) {
199 200 201 202 203 204
    if (id == n || id == parameters_.size()) {
      for (size_t i = 0; i < parameters_[n].size(); ++i) {
        const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
        if (grad) {
          grad->zeroMem();
        }
T
tensor-tang 已提交
205 206 207 208 209
      }
    }
  }
}

210 211
void MKLDNNTester::clearBotDiffs(size_t id) {
  CHECK_LE(id, dataLayers_.size());
T
tensor-tang 已提交
212
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
213 214 215 216 217
    if (id == n || id == dataLayers_.size()) {
      // clear inputs layers of this specific layer
      for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
        dataLayers_[n][i]->getOutputGrad()->zeroMem();
      }
T
tensor-tang 已提交
218 219 220 221
    }
  }
}

222 223
void MKLDNNTester::clearTopDatas(size_t id) {
  CHECK_LE(id, testLayers_.size());
T
tensor-tang 已提交
224
  for (size_t i = 0; i < testLayers_.size(); ++i) {
225 226 227
    if (id == i || id == testLayers_.size()) {
      testLayers_[i]->getOutputValue()->zeroMem();
    }
T
tensor-tang 已提交
228 229 230
  }
}

231
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

242
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
243 244 245
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
246 247 248 249

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
250 251
}

252
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
253 254 255 256
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
257 258 259
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
260 261
}

262
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
284 285
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
286 287 288
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

289
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
290 291 292 293
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

294
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
295 296 297 298
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

299
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
300 301 302 303 304 305 306
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
307 308 309 310 311 312 313
  // simple updater
  UpdateCallback updateCallback = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-3;
    value->add(*grad, lr);
  };
T
tensor-tang 已提交
314
  randomTopDiffs();
315 316
  dnnLayer_->backward(updateCallback);
  refLayer_->backward(updateCallback);
T
tensor-tang 已提交
317 318 319 320 321
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
322
  // and clearTopDatas(REF) should be coverd by ref layers
T
tensor-tang 已提交
323
  clearBotDiffs(REF);
324
  clearWgtDiffs(REF);
T
tensor-tang 已提交
325 326
}

327
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
328 329 330 331 332 333 334 335
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
T
tensor-tang 已提交
336 337
  VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
                     << " vs " << ref.layerConfig.type();
T
tensor-tang 已提交
338 339 340 341 342 343 344
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
345
  // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
T
tensor-tang 已提交
346
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
347 348 349
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
350
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
351
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
352 353
    runOnce();
  }
T
tensor-tang 已提交
354

T
tensor-tang 已提交
355 356 357 358 359
  if (parameters_[DNN].empty()) {
    // has no paramters
    return;
  }

T
tensor-tang 已提交
360 361 362 363
  // After run some iterations, the mkldnn weight has been stored in dnnLayer
  // and we can also get the mkldnn weight parameter header format.
  // Weight parameter should always be index 0 (and bias index 1).
  // TODO(TJ): should also consider mean and var format when batchnorm ready
T
tensor-tang 已提交
364 365 366 367 368 369 370
  int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
  int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
  if (dnnWgtFmt == refWgtFmt) {
    // weight format are equal, so no need check more
    return;
  }

T
tensor-tang 已提交
371
  // then save the weights and restart again
T
tensor-tang 已提交
372 373 374 375
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
376

T
tensor-tang 已提交
377
  // restart again with dnn weight format
T
tensor-tang 已提交
378
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
379 380
  // TODO(TJ): should also considerate mean and var format when batchnorm ready
  parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
T
tensor-tang 已提交
381

T
tensor-tang 已提交
382 383 384 385 386
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
387

T
tensor-tang 已提交
388
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
389
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
390 391 392 393 394
    runOnce();
  }
}

}  //  namespace paddle