nn.py 73.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yangyaming 已提交
22
from tensor import concat
Y
Yu Yang 已提交
23 24

__all__ = [
Y
ying 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'fc',
    'embedding',
    'dynamic_lstm',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'accuracy',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'l2_normalize',
    'matmul',
    'warpctc',
    'sequence_reshape',
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
66
       name=None):
Y
Yu Yang 已提交
67
    """
68
    **Fully Connected Layer**
Y
Yu Yang 已提交
69

C
caoying03 已提交
70
    The fully connected layer can take multiple tensors as its inputs. It
Y
ying 已提交
71 72 73 74 75 76 77 78
    creates a variable (one for each input tensor) called weights for each
    input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer
    multiplies each input tensor with its coresponding weight to produce
    an output Tensor. If multiple input tensors are given, the results of
    multiple multiplications will be sumed up. If bias_attr is not None,
    a biases variable will be created and added to the output. Finally,
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
79

C
caoying03 已提交
80
    This process can be formulated as follows:
81 82 83

    .. math::

C
caoying03 已提交
84
        Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})
85 86 87

    In the above equation:

C
caoying03 已提交
88 89 90 91
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
C
caoying03 已提交
92 93
    * :math:`Act`: The activation funtion.
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
94 95

    Args:
C
caoying03 已提交
96 97 98 99 100 101 102 103 104 105
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
                              dimensions will be flatten to form the first
                              dimension of the final matrix (height of the
E
emailweixu 已提交
106
                              matrix), and the rest `rank(X) - num_flatten_dims`
C
caoying03 已提交
107 108 109 110
                              dimensions are flattened to form the second
                              dimension of the final matrix (width of the matrix).
                              For example, suppose `X` is a 6-dimensional tensor
                              with a shape [2, 3, 4, 5, 6], and
E
emailweixu 已提交
111
                              `num_flatten_dims` = 3. Then, the flattened matrix
C
caoying03 已提交
112
                              will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
E
emailweixu 已提交
113
                              By default, `num_flatten_dims` is set to 1.
C
caoying03 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
129 130


131
    Returns:
C
caoying03 已提交
132
        Variable: The output tensor variable.
133 134

    Raises:
C
caoying03 已提交
135
        ValueError: If rank of the input tensor is less than 2.
136 137 138 139

    Examples:
        .. code-block:: python

C
caoying03 已提交
140
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
141
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
142
    """
C
caoying03 已提交
143

C
caoying03 已提交
144
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
C
caoying03 已提交
164 165
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


181
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Y
Yu Yang 已提交
182
    """
183 184 185 186 187 188 189
    **Embedding Layer**

    This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table.
    The result of this lookup is the embedding of each ID in the *input*.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
190 191

    Args:
192
       input(Variable): Input to the function
Y
yangyaming 已提交
193
       size(tuple|list|None): Shape of the look up table parameter
194 195 196
       is_sparse(bool): Boolean flag that specifying whether the input is sparse
       param_attr(ParamAttr): Parameters for this layer
       dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
197

198 199 200
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
201

202 203
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
204

C
chengduoZH 已提交
205
          dict_size = len(dataset.ids)
206
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
207
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
233
                 dtype='float32'):
Y
Yibing Liu 已提交
234 235 236 237 238 239
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
240
    .. math::
Y
Yibing Liu 已提交
241

242
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
243

244
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
245

246
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
247

248 249 250
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
251

Y
Yibing Liu 已提交
252
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
253

254
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
255
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
256 257 258 259 260 261
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
    gate bias vector), :math:`\sigma` is the non-line activations, such as
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
262 263
    all of which have the same size as the cell output activation vector :math:`h`.

264 265 266 267
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
268 269 270
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
271 272 273
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
274 275 276
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
277 278

    Args:
279 280 281 282
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
283 284
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
285 286
        param_attr(ParamAttr): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yibing Liu 已提交
287

288 289
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yibing Liu 已提交
290 291
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
Y
Yibing Liu 已提交
292
        bias_attr(ParamAttr): The bias attribute for the learnable bias
293 294 295
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
296

297 298
                              1. `use_peepholes = False`
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
299
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
300 301
                              2. `use_peepholes = True`
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
302 303
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
304
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
305 306
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
307 308
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
309
                              "identity"], default "sigmoid".
310
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
311 312 313 314 315
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
Y
Yibing Liu 已提交
316 317

    Returns:
Y
Yibing Liu 已提交
318 319
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
320

Y
Yibing Liu 已提交
321
    Examples:
Y
Yibing Liu 已提交
322 323
        .. code-block:: python

Y
Yibing Liu 已提交
324 325
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
326
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
327 328
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
329
    """
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
372
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
373
    """
374
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
375

376 377
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
378

379
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
380

381
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
382

383
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
384 385

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
386 387 388
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
389 390
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

391 392
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
393 394 395
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
396 397 398 399 400 401 402 403 404

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
        activation (string): The activation type for cell (actNode). Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Y
Yu Yang 已提交
405

406 407 408 409 410 411
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
412

413
             # assuming we have x_t_data and prev_hidden of size=10
414
             x_t = fluid.layers.fc(input=x_t_data, size=30)
415 416
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
437

Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


465
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


491
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


def cos_sim(X, Y, **kwargs):
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs):
    helper = LayerHelper('dropout', **kwargs)
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={'dropout_prob': dropout_prob,
               'is_test': is_test,
               'seed': seed})
    return out


Y
Yu Yang 已提交
539 540
def cross_entropy(input, label, **kwargs):
    """
Y
Yibing Liu 已提交
541 542 543 544 545 546
    **Cross Entropy Layer**

    This layer computes the cross entropy between `input` and `label`. It supports
    both standard cross-entropy and soft-label cross-entropy loss computation.

    1) One-hot cross-entropy:
Y
Yibing Liu 已提交
547
	`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
548

Y
Yibing Liu 已提交
549
        .. math::
Y
yangyaming 已提交
550

Y
Yibing Liu 已提交
551 552 553
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
Y
Yibing Liu 已提交
554
	`soft_label = True`, `Label[i, j]` indicates the soft label of class j
Y
Yibing Liu 已提交
555 556 557 558 559 560
	for sample i:

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
561
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
562 563 564 565
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
	 As a special case of 2), when each row of 'label' has only one
Y
Yibing Liu 已提交
566 567
	 non-zero element which is equal to 1, soft-label cross-entropy degenerates
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
568

Y
Yibing Liu 已提交
569
    Args:
Y
yangyaming 已提交
570 571
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
            batch size and D is the number of classes. This input is a probability
Y
Yibing Liu 已提交
572 573
            computed by the previous operator, which is almost always the result
            of a softmax operator.
Y
yangyaming 已提交
574 575 576
        label (Variable|list): the ground truth which is a 2-D tensor. When
              `soft_label` is set to `False`, `label` is a tensor<int64> with shape
              [N x 1]. When `soft_label` is set to `True`, `label` is a
Y
Yibing Liu 已提交
577
              tensor<float/double> with shape [N x D].
Y
Yibing Liu 已提交
578
        soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
Y
Yibing Liu 已提交
579
              the given labels as soft labels, default `False`.
Y
Yibing Liu 已提交
580 581 582 583 584

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
Y
yangyaming 已提交
585
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
Y
Yibing Liu 已提交
586 587
              `soft_label == True`, and the 2nd dimension of `input` and `label` are not \
               equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
Y
Yibing Liu 已提交
588 589 590 591 592 593

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607
    """
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    """
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    **Square error cost layer**

    This layer accepts input predictions and target label and returns the squared error cost.
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the element-wise squared error difference \
                  of input and label.

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
638 639 640 641 642 643 644 645 646 647 648
    """
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
649 650
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    return square_out


def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out = helper.create_tmp_variable(dtype="float32")
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
Y
yangyaming 已提交
695
    This function computes and outputs the precision, recall and
696
    F1-score of chunk detection.
Y
Yu Yang 已提交
697 698 699 700 701 702 703
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
704 705 706
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
707 708 709 710 711 712 713 714

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
715 716 717 718
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
719 720 721
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
722 723
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
724
        })
725
    return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
Y
Yu Yang 已提交
726 727 728 729 730 731 732 733 734


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
735
                  act=None):
Y
Yu Yang 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
777
           use_cudnn=True,
C
chengduoZH 已提交
778
           act=None):
Y
Yu Yang 已提交
779
    """
C
chengduoZH 已提交
780 781 782 783 784 785 786 787
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels, H is the height
    of the feature, and W is the width of the feature.
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
C
refine  
chengduoZH 已提交
788
    If bias attribution and activation type are provided, bias is added to the output of the convolution,
C
chengduoZH 已提交
789 790 791
    and the corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:

C
refine  
chengduoZH 已提交
792

C
chengduoZH 已提交
793 794
    .. math::

C
refine  
chengduoZH 已提交
795
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
796

C
chengduoZH 已提交
797
    In the above equation:
C
chengduoZH 已提交
798 799 800

        * :math:`X`: Input value, a tensor with NCHW format.
        * :math:`W`: Filter value, a tensor with MCHW format.
C
chengduoZH 已提交
801
        * :math:`\\ast`: Convolution operation.
C
refine  
chengduoZH 已提交
802
        * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
C
chengduoZH 已提交
803
        * :math:`\\sigma`: Activation function.
C
chengduoZH 已提交
804 805 806 807
        * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

C
chengduoZH 已提交
808 809
        Input:
            Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
810

C
chengduoZH 已提交
811
            Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
812

C
chengduoZH 已提交
813 814
        Output:
            Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
815
        Where
C
chengduoZH 已提交
816
    .. math::
C
chengduoZH 已提交
817

C
chengduoZH 已提交
818 819
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
820 821

    Args:
C
chengduoZH 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        groups(int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
841 842
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduoZH 已提交
843
        act(str): Activation type. Default: None
C
chengduoZH 已提交
844 845 846 847 848

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
849 850 851
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.

C
chengduoZH 已提交
852 853 854
    Examples:
        .. code-block:: python

C
refine  
chengduoZH 已提交
855
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
C
chengduoZH 已提交
856
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    """

    if stride is None:
        stride = [1, 1]
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
C
chengduoZH 已提交
878 879
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
897
        type='conv2d',
Y
Yu Yang 已提交
898 899 900 901 902
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
903 904 905 906 907 908
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
909 910 911 912 913 914 915 916

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


def sequence_pool(input, pool_type, **kwargs):
    """
Y
yangyaming 已提交
917 918 919
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
945

L
Luo Tao 已提交
946 947
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
948
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
949 950 951 952 953 954 955 956
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
957

Y
yangyaming 已提交
958
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
959 960 961 962 963
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976
    """
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
977 978 979 980 981
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
982 983 984
    return pool_out


985
def sequence_first_step(input, **kwargs):
L
Luo Tao 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1000

L
Luo Tao 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1010

Y
yangyaming 已提交
1011
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1012 1013 1014
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1015 1016 1017 1018
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input, **kwargs):
L
Luo Tao 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1033

L
Luo Tao 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1043

Y
yangyaming 已提交
1044
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1045 1046 1047
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1048 1049 1050
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1051 1052 1053 1054 1055
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
C
caoying03 已提交
1056
           global_pooling=False,
C
chengduoZH 已提交
1057
           use_cudnn=True,
C
caoying03 已提交
1058
           name=None):
Y
Yu Yang 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]
C
chengduoZH 已提交
1077 1078
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1093 1094
            "paddings": pool_padding,
            "use_cudnn": use_cudnn
Y
Yu Yang 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1107 1108
               data_layout='NCHW',
               name=None):
Y
Yu Yang 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1135
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1136 1137

    mean = helper.create_global_variable(
Q
QI JUN 已提交
1138 1139 1140 1141
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1142 1143 1144
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
Q
QI JUN 已提交
1145 1146 1147 1148
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1149 1150 1151 1152 1153 1154 1155
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1156 1157
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


C
caoying03 已提交
1184
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1207
                     dilation=None,
C
caoying03 已提交
1208
                     param_attr=None,
C
chengduoZH 已提交
1209
                     use_cudnn=True,
C
caoying03 已提交
1210
                     name=None):
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    """
    The transpose of conv2d layer.

    This layer is also known as deconvolution layer.

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
C
chengduoZH 已提交
1233 1234 1235
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation.
Y
Yu Yang 已提交
1236
        param_attr: Parameter Attribute.
1237 1238
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
caoying03 已提交
1239 1240
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1258
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1259 1260 1261
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1262 1263 1264 1265 1266
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

C
chengduoZH 已提交
1267 1268 1269 1270
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    op_attr['use_cudnn'] = use_cudnn

Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276 1277 1278
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1279
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1280 1281 1282

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1283 1284 1285 1286 1287

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1288
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1289

Y
Yu Yang 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1306 1307


C
caoying03 已提交
1308
def sequence_expand(x, y, name=None):
1309 1310
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1311
    explain how sequence_expand works:
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1340
                y.lod = [[0, 2, 3, 6]]
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1352 1353
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1364
            out = layers.sequence_expand(x=x, y=y)
1365
    """
Y
yangyaming 已提交
1366
    helper = LayerHelper('sequence_expand', input=x, **locals())
1367 1368 1369
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1370 1371
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1372
    return tmp
1373 1374


Y
yangyaming 已提交
1375 1376 1377 1378
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1379
              param_attr=None,
C
caoying03 已提交
1380 1381
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1382 1383 1384 1385
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1386
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1387

1388
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1389

1390
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1391

1392
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1393 1394 1395

            h_t & = o_t tanh(c_t)

1396 1397 1398 1399 1400 1401
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1402 1403 1404

        .. math::

1405
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1406 1407 1408 1409 1410 1411 1412 1413

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1414
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1415 1416

    Args:
Y
yangyaming 已提交
1417 1418 1419 1420 1421 1422
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1423
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1424 1425
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1426 1427
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1428 1429
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1430 1431

    Returns:
Y
yangyaming 已提交
1432
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1433 1434 1435 1436

    Raises:
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
                not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
1437 1438
                and **cell_t_prev** not be the same or the 2nd dimensions of \
                **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1439 1440 1441 1442 1443 1444

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1445
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1446
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1447
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1464
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1465 1466 1467 1468
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1469 1470
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1471 1472 1473
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1474
    size = cell_t_prev.shape[1]
1475
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1476 1477
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
1478
                param_attr=param_attr,
1479
                bias_attr=bias_attr)
Y
yangyaming 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
1492
    return h, c
G
guosheng 已提交
1493 1494


C
caoying03 已提交
1495
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1496
    """
Y
yangyaming 已提交
1497
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1498 1499 1500

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1501 1502 1503 1504
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
1505
            the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1506 1507
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1508
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1509 1510
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1511 1512 1513

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1514

G
guosheng 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1539 1540


C
caoying03 已提交
1541
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1542
    """
Y
yangyaming 已提交
1543
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
1544 1545 1546

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1547 1548 1549 1550
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
1551
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1552 1553
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1554
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1555 1556
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1557 1558 1559

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1560

G
guosheng 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
1585 1586


C
caoying03 已提交
1587
def reduce_max(input, dim=None, keep_dim=False, name=None):
1588
    """
Y
yangyaming 已提交
1589
    Computes the maximum of tensor elements over the given dimension.
1590 1591 1592

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1593 1594 1595 1596
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1597
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1598 1599
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1600
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1601 1602
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1603 1604 1605

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
1633
def reduce_min(input, dim=None, keep_dim=False, name=None):
1634
    """
Y
yangyaming 已提交
1635
    Computes the minimum of tensor elements over the given dimension.
1636 1637 1638

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1639 1640 1641 1642
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1643
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1644 1645
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1646
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1647 1648
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1649 1650 1651

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1677 1678


C
caoying03 已提交
1679
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
1680
    """
C
caoying03 已提交
1681
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
1682 1683 1684

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
1685 1686 1687 1688 1689
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
1690
            :attr:`dim` dimension orderly.
C
caoying03 已提交
1691
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
1692
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
1693 1694
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
          fc = fluid.layers.l2_normalize(x=data, axis=1)
    """

    if len(x.shape) == 1: axis = 0

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
1800
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
1818 1819


1820
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
1821
    """
C
chengduoZH 已提交
1822 1823 1824
    Applies matrix multiplication to two tensors. Currently, the input
    tensors' rank can be any, but when the rank of anyone inputs is
    bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
1825

C
chengduoZH 已提交
1826
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
1827
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
1828

1829 1830 1831 1832 1833
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
1834
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
1835

C
chengduoZH 已提交
1836
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
1837
      performs in the following way.
G
guosheng 已提交
1838

1839
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
1840
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
1841
        last two dimensions and a batched matrix multiply supporting broadcast
1842
        applies on the two tensors.
G
guosheng 已提交
1843

Y
ying 已提交
1844 1845
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
1846
    removed after matrix multiplication.
G
guosheng 已提交
1847 1848 1849

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
1850 1851 1852
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
1853
        name(str|None): A name for this layer(optional). If set None, the layer
1854
            will be named automatically.
G
guosheng 已提交
1855 1856

    Returns:
1857
        Variable: The product Tensor variable.
G
guosheng 已提交
1858

G
guosheng 已提交
1859 1860 1861
    Examples:
        .. code-block:: python

1862
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
1863 1864
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
            # x: [M], y: [N]
1876

1877
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
1878
    """
1879
    helper = LayerHelper('matmul', **locals())
C
chengduoZH 已提交
1880 1881 1882
    assert max(len(x.shape), len(y.shape)) <= 3 or len(x.shape) == len(
        y.
        shape), 'Inputs\' rank should be equal or their rank should be less 4.'
1883
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
G
guosheng 已提交
1884
    helper.append_op(
1885 1886 1887 1888 1889 1890 1891
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
1892 1893


W
wanghaoshuang 已提交
1894 1895
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
    """
1896 1897
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
1898
    to compute Connectionist Temporal Classification (CTC) loss.
1899 1900
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
1914
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
1915 1916
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
1917 1918 1919 1920
       norm_by_times: (bool, default: false), whether to normalize
       the gradients by the number of time-step,which is also the
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
1921 1922

    Returns:
1923 1924
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

    Examples:
        .. code-block:: python
            y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
            cost = layers.warpctc(input=y_predict, label=y)

    """
    helper = LayerHelper('warpctc', **kwargs)
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036


def transpose(input, perm, name=None):
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
            x_transposed = layers.transpose(input=x, perm=[1, 0, 2])
    """

    if len(perm) != len(input.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")

    helper = LayerHelper('transpose', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='transpose',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out