onnxruntime_predictor.cc 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/onnxruntime_predictor.h"

#include <glog/logging.h>

#include <algorithm>
#include <fstream>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid//platform/device/gpu/gpu_types.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/io_utils.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"

namespace paddle {

44
paddle_infer::DataType ConvertONNXType(ONNXTensorElementDataType type) {
45 46
  switch (type) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
47 48 49
      return paddle_infer::DataType::FLOAT32;
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16:
      return paddle_infer::DataType::FLOAT16;
50
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:
51
      return paddle_infer::DataType::INT8;
52
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
53
      return paddle_infer::DataType::INT32;
54
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:
55
      return paddle_infer::DataType::INT64;
56
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
57
      return paddle_infer::DataType::UINT8;
58 59
    default:
      LOG(ERROR) << "unsupported ONNX Tensor Type: " << static_cast<int>(type);
60
      return paddle_infer::DataType::FLOAT32;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  }
}

bool CheckConvertToONNX(const AnalysisConfig &config) {
  if (!config.model_dir().empty()) {
    LOG(ERROR) << "Paddle2ONNX not support model_dir config";
    // TODO(heliqi jiangjiajun): Paddle2ONNX not support
    // config.model_dir() + "/__model__"
    // config.model_dir() + var_name
    return false;
  } else if (config.prog_file().empty() || config.params_file().empty()) {
    LOG(ERROR) << string::Sprintf(
        "not valid model path '%s' or program path '%s' or params path '%s'.",
        config.model_dir(), config.prog_file(), config.params_file());
    return false;
  }
  return paddle2onnx::IsExportable(config.prog_file(), config.params_file(),
                                   config.model_from_memory());
}

bool ONNXRuntimePredictor::Init() {
  VLOG(3) << "ONNXRuntime Predictor::init()";

  // Now ONNXRuntime only suuport CPU
85
  const char *device_name = config_.use_gpu() ? "Cuda" : "Cpu";
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  if (config_.use_gpu()) {
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
  } else {
    place_ = paddle::platform::CPUPlace();
  }

  std::string onnx_proto;
  paddle2onnx::Export(config_.prog_file(), config_.params_file(), &onnx_proto,
                      config_.model_from_memory());

  Ort::SessionOptions session_options;
  if (config_.ort_optimization_enabled()) {
    session_options.SetGraphOptimizationLevel(
        GraphOptimizationLevel::ORT_ENABLE_ALL);
  }
  // Turn optimization off first, and then turn it on when it's stable
  // session_options.SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL);
  // session_options.EnableCpuMemArena();
  // session_options.EnableMemPattern();
  // session_options.SetInterOpNumThreads(config_.cpu_math_library_num_threads());
  session_options.SetIntraOpNumThreads(config_.cpu_math_library_num_threads());
  VLOG(2) << "ONNXRuntime threads " << config_.cpu_math_library_num_threads();
  if (config_.profile_enabled()) {
    LOG(WARNING) << "ONNXRuntime Profiler is activated, which might affect the "
                    "performance";
#if defined(_WIN32)
    session_options.EnableProfiling(L"ONNX");
#else
    session_options.EnableProfiling("ONNX");
#endif
  } else {
    VLOG(2) << "ONNXRuntime Profiler is deactivated, and no profiling report "
               "will be "
               "generated.";
  }
  session_ = {env_, onnx_proto.data(), onnx_proto.size(), session_options};
122
  binding_ = std::make_shared<Ort::IoBinding>(session_);
123

124 125
  Ort::MemoryInfo memory_info(device_name, OrtDeviceAllocator,
                              place_.GetDeviceId(), OrtMemTypeDefault);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Ort::Allocator allocator(session_, memory_info);

  size_t n_inputs = session_.GetInputCount();
  for (size_t i = 0; i < n_inputs; ++i) {
    auto input_name = session_.GetInputName(i, allocator);
    auto type_info = session_.GetInputTypeInfo(i);
    std::vector<int64_t> shape =
        type_info.GetTensorTypeAndShapeInfo().GetShape();
    ONNXTensorElementDataType data_type =
        type_info.GetTensorTypeAndShapeInfo().GetElementType();
    input_desc_.emplace_back(ONNXDesc{input_name, shape, data_type});
    allocator.Free(input_name);
  }

  size_t n_outputs = session_.GetOutputCount();
  for (size_t i = 0; i < n_outputs; ++i) {
    auto output_name = session_.GetOutputName(i, allocator);
    auto type_info = session_.GetOutputTypeInfo(i);
    std::vector<int64_t> shape =
        type_info.GetTensorTypeAndShapeInfo().GetShape();
    ONNXTensorElementDataType data_type =
        type_info.GetTensorTypeAndShapeInfo().GetElementType();
    output_desc_.emplace_back(ONNXDesc{output_name, shape, data_type});
149 150 151 152 153

    Ort::MemoryInfo out_memory_info(device_name, OrtDeviceAllocator,
                                    place_.GetDeviceId(), OrtMemTypeDefault);
    binding_->BindOutput(output_name, out_memory_info);

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    allocator.Free(output_name);
  }
  return true;
}

template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kONNXRuntime>(
    const AnalysisConfig &config) {
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }

  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));

  VLOG(3) << "create ONNXRuntimePredictor";

  std::unique_ptr<PaddlePredictor> predictor(new ONNXRuntimePredictor(config));
  // Each config can only be used for one predictor.
  config.SetInValid();
  auto predictor_p = dynamic_cast<ONNXRuntimePredictor *>(predictor.get());

  if (!predictor_p->Init()) {
    return nullptr;
  }

  return predictor;
}

std::vector<std::string> ONNXRuntimePredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto input_desc : input_desc_) {
    input_names.push_back(input_desc.name);
  }
  return input_names;
}

std::map<std::string, std::vector<int64_t>>
ONNXRuntimePredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  for (auto input_desc : input_desc_) {
    input_shapes[input_desc.name] = input_desc.shape;
  }
  return input_shapes;
}

std::vector<std::string> ONNXRuntimePredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto output_desc : output_desc_) {
    output_names.push_back(output_desc.name);
  }
  return output_names;
}

212 213 214 215 216 217 218 219 220 221 222 223
bool ONNXRuntimePredictor::FindONNXDesc(const std::string &name,
                                        bool is_input) {
  if (is_input) {
    for (auto i : input_desc_)
      if (i.name == name) return true;
  } else {
    for (auto i : output_desc_)
      if (i.name == name) return true;
  }
  return false;
}

224 225
std::unique_ptr<ZeroCopyTensor> ONNXRuntimePredictor::GetInputTensor(
    const std::string &name) {
226 227 228 229 230 231
  PADDLE_ENFORCE_EQ(FindONNXDesc(name, true), true,
                    platform::errors::PreconditionNotMet(
                        "The in variable named %s is not found in the "
                        "ONNXPredictor.",
                        name));
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(nullptr));
232 233 234 235 236 237 238 239
  res->input_or_output_ = true;
  res->SetName(name);
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = place_;
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
240 241
  res->SetOrtMark(true);
  res->SetOrtBinding(binding_);
242 243 244 245 246
  return res;
}

std::unique_ptr<ZeroCopyTensor> ONNXRuntimePredictor::GetOutputTensor(
    const std::string &name) {
247 248 249 250 251 252
  PADDLE_ENFORCE_EQ(FindONNXDesc(name, false), true,
                    platform::errors::PreconditionNotMet(
                        "The out variable named %s is not found in the "
                        "ONNXPredictor.",
                        name));
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(nullptr));
253 254 255 256 257 258 259 260
  res->input_or_output_ = false;
  res->SetName(name);
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = place_;
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
261 262 263 264 265 266 267 268 269
  res->SetOrtMark(true);
  res->SetOrtBinding(binding_);
  int size = output_desc_.size();
  for (int i = 0; i < size; ++i)
    if (output_desc_[i].name == name) {
      res->idx_ = i;
      res->dtype_ = ConvertONNXType(output_desc_[i].dtype);
      break;
    }
270 271 272 273 274 275 276 277 278 279 280 281
  return res;
}

bool ONNXRuntimePredictor::Run(const std::vector<PaddleTensor> &inputs,
                               std::vector<PaddleTensor> *output_data,
                               int batch_size) {
  LOG(ERROR) << "Not support Run";
  return false;
}

bool ONNXRuntimePredictor::ZeroCopyRun() {
  try {
282
    session_.Run({}, *(binding_.get()));
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  } catch (const std::exception &e) {
    LOG(ERROR) << e.what();
    return false;
  }

  return true;
}

std::unique_ptr<PaddlePredictor> ONNXRuntimePredictor::Clone() {
  LOG(ERROR) << "Not support Clone(), Please create new Predictor";
  return nullptr;
}

uint64_t ONNXRuntimePredictor::TryShrinkMemory() {
  return paddle::memory::Release(place_);
}

ONNXRuntimePredictor::~ONNXRuntimePredictor() {
301 302 303
  binding_->ClearBoundInputs();
  binding_->ClearBoundOutputs();

304 305 306 307
  memory::Release(place_);
}

}  // namespace paddle