test_sgd_op.py 17.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22
from op_test import OpTest
J
Jiawei Wang 已提交
23
import paddle
Q
Qiao Longfei 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

Q
Qiao Longfei 已提交
27

28
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
29
    def setUp(self):
Q
qijun 已提交
30
        self.op_type = "sgd"
T
tensor-tang 已提交
31 32 33
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
34
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
35

36 37
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
38

T
tensor-tang 已提交
39 40 41 42
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
43 44 45
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
46

T
tensor-tang 已提交
47 48 49 50 51 52
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
53
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
54
    def check_with_place(self, place):
Q
qijun 已提交
55 56 57 58 59
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
60
        self.conf()
Q
qiaolongfei 已提交
61 62 63 64

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
65
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
66 67 68 69 70 71 72 73
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
74
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
116 117 118 119 120 121 122 123
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
124 125 126 127 128

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
129
        row_width = 12
Q
qiaolongfei 已提交
130
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
131 132
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
133 134

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
135 136 137 138 139
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
140

Q
qijun 已提交
141
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
142
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
143 144

        # create and initialize Param Variable
Q
qiaolongfei 已提交
145 146 147 148 149 150 151
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
152
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
153 154 155 156 157 158 159
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
160 161

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
162
        lr_value = 0.1
Q
qijun 已提交
163
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
164
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
165 166
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
167 168 169 170 171 172
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
            w_after_optimize[id] = w_before_optimize[
                id] - lr_value * grad_array[index]

Q
qijun 已提交
173 174 175 176 177 178 179
        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
D
dzhwinter 已提交
180
        sgd_op.run(scope, place)
Q
qijun 已提交
181 182

        # get and compare result
Q
qiaolongfei 已提交
183 184
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
185

186
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
187
        places = [core.CPUPlace()]
188
        # do not support GPU kernel currently
Q
qijun 已提交
189 190 191
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
192

193 194
class TestSGDOpWithLargeInput(unittest.TestCase):
    def runTest(self):
195
        paddle.enable_static()
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
        label = fluid.layers.fill_constant(
            shape=[1, 150], value=0.5, dtype='float32')
        emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
        out = fluid.layers.l2_normalize(x=emb, axis=-1)

        cost = fluid.layers.square_error_cost(input=out, label=label)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        compiled_prog = fluid.compiler.CompiledProgram(
            fluid.default_main_program())
        result = exe.run(compiled_prog, fetch_list=[avg_cost])


J
Jiawei Wang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class TestSGDV2(unittest.TestCase):
    def test_sgd_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.SGD(learning_rate=0.01,
                                    parameters=linear.parameters(),
                                    weight_decay=0.01)
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_sgd(self):
231
        paddle.enable_static()
W
WangXi 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

        def check_sgd_optimizer(optimizer_attr):
            init_program = paddle.static.Program()
            program = paddle.static.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])
J
Jiawei Wang 已提交
268 269 270 271

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)

W
WangXi 已提交
272
    def test_sgd_group_dygraph(self):
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.SGD(learning_rate=0.01,
                                    parameters=[{
                                        'params': linear_1.parameters()
                                    }, {
                                        'params': linear_2.parameters(),
                                        'weight_decay': 0.001,
                                        'learning_rate': 0.1
                                    }],
                                    weight_decay=0.01)
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
class TestSGDMultiPrecision2_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
        optimizer = paddle.optimizer.SGD(parameters=model.parameters(),
                                         multi_precision=mp)
        if mp == True:
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
            if mp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.optimizer.SGD(multi_precision=mp)

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
                use_fp16_guard=False)
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16')
            else:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32')
            hidden = paddle.static.nn.fc(x=data, size=10)
            loss = paddle.fluid.layers.mean(hidden)
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
            loss_data, = exe.run(train_program,
                                 feed={"X": x},
                                 fetch_list=[loss.name])
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
        self.assertEqual(
            np.allclose(
                output1_dy.astype('float32').numpy(),
                output2_dy.astype('float32').numpy(),
                atol=1e-01),
            True)
        for idx in range(len(params1_dy)):
            self.assertEqual(
                np.allclose(
                    params1_dy[idx].astype('float32').numpy(),
                    params2_dy[idx].astype('float32').numpy(),
                    atol=1e-01),
                True)
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
            self.assertEqual(
                np.allclose(
                    output1_st[idx].astype('float32'),
                    output2_st[idx].astype('float32'),
                    atol=1e-01),
                True)


class TestSGDMultiPrecision1_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001,
            parameter_list=model.parameters(),
            multi_precision=mp)
        if mp == True:
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
            if mp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_gradients()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.minimize(loss)
                optimizer.clear_gradients()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.001,
                                               multi_precision=mp)

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
                use_fp16_guard=False)
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16')
            else:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32')
            hidden = paddle.static.nn.fc(x=data, size=10)
            loss = paddle.fluid.layers.mean(hidden)
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
            loss_data, = exe.run(train_program,
                                 feed={"X": x},
                                 fetch_list=[loss.name])
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
        self.assertEqual(
            np.allclose(
                output1_dy.astype('float32').numpy(),
                output2_dy.astype('float32').numpy(),
                atol=1e-01),
            True)
        for idx in range(len(params1_dy)):
            self.assertEqual(
                np.allclose(
                    params1_dy[idx].astype('float32').numpy(),
                    params2_dy[idx].astype('float32').numpy(),
                    atol=1e-01),
                True)
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
            self.assertEqual(
                np.allclose(
                    output1_st[idx].astype('float32'),
                    output2_st[idx].astype('float32'),
                    atol=1e-01),
                True)


Q
Qiao Longfei 已提交
502 503
if __name__ == "__main__":
    unittest.main()