auc_op.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tangwei12 已提交
16

17 18
#include <string>
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
T
typhoonzero 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
T
typhoonzero 已提交
27
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
28
 public:
T
tangwei12 已提交
29 30 31
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *predict = ctx.Input<Tensor>("Predict");
    auto *label = ctx.Input<Tensor>("Label");
W
wangzhen38 已提交
32 33 34 35 36 37
    auto *ins_tag_weight = ctx.Input<Tensor>("InsTagWeight");
    const auto *ins_tag_weight_value = ins_tag_weight->data<float>();
    bool is_fake_data = 0;
    if (ins_tag_weight_value[0] == 0) {
      is_fake_data = 1;
    }
T
tangwei12 已提交
38
    int num_thresholds = ctx.Attr<int>("num_thresholds");
T
tangwei12 已提交
39
    int slide_steps = ctx.Attr<int>("slide_steps");
T
tangwei12 已提交
40

W
Wu Yi 已提交
41 42
    // Only use output var for now, make sure it's persistable and
    // not cleaned up for each batch.
43
    auto *auc_tensor = ctx.Output<Tensor>("AUC");
T
tangwei12 已提交
44 45
    auto *stat_pos = ctx.Output<Tensor>("StatPosOut");
    auto *stat_neg = ctx.Output<Tensor>("StatNegOut");
T
typhoonzero 已提交
46

T
tangwei12 已提交
47 48
    auto *origin_stat_pos = stat_pos->mutable_data<int64_t>(ctx.GetPlace());
    auto *origin_stat_neg = stat_neg->mutable_data<int64_t>(ctx.GetPlace());
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto *auc_value = auc_tensor->mutable_data<double>(ctx.GetPlace());

    // Just for pass UT, since UT's input & output connot be set same var
    auto *stat_pos_in_tensor = ctx.Input<Tensor>("StatPos");
    auto *pos_in_data = stat_pos_in_tensor->data<int64_t>();
    auto *stat_neg_in_tensor = ctx.Input<Tensor>("StatNeg");
    auto *neg_in_data = stat_neg_in_tensor->data<int64_t>();
    if (stat_pos_in_tensor != stat_pos) {
      memcpy(origin_stat_pos, pos_in_data,
             ((1 + slide_steps) * (num_thresholds + 1) +
              (slide_steps > 0 ? 1 : 0)) *
                 sizeof(int64_t));
    }
    if (stat_neg_in_tensor != stat_neg) {
      memcpy(origin_stat_neg, neg_in_data,
             ((1 + slide_steps) * (num_thresholds + 1) +
              (slide_steps > 0 ? 1 : 0)) *
                 sizeof(int64_t));
    }
W
wangzhen38 已提交
68 69 70 71 72

    // when calculate global_auc && is fake data, just do nothing
    if (slide_steps == 0 && is_fake_data) {
      return;
    }
73
    statAuc(label, predict, num_thresholds, slide_steps, origin_stat_pos,
W
wangzhen38 已提交
74
            origin_stat_neg, is_fake_data);
75 76 77 78 79 80 81 82

    int sum_offset = slide_steps * (num_thresholds + 1);
    calcAuc(origin_stat_pos + sum_offset, origin_stat_neg + sum_offset,
            num_thresholds, auc_value);
    if (slide_steps) {
      origin_stat_pos[(slide_steps + 1) * (num_thresholds + 1)] += 1;
      origin_stat_neg[(slide_steps + 1) * (num_thresholds + 1)] += 1;
    }
T
tangwei12 已提交
83
  }
T
typhoonzero 已提交
84

T
tangwei12 已提交
85 86 87 88 89 90
 private:
  inline static double trapezoidArea(double X1, double X2, double Y1,
                                     double Y2) {
    return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
  }

T
tangwei12 已提交
91
  inline static void statAuc(const framework::Tensor *label,
T
tangwei12 已提交
92
                             const framework::Tensor *predict,
T
tangwei12 已提交
93
                             const int num_thresholds, const int slide_steps,
W
wangzhen38 已提交
94 95
                             int64_t *origin_stat_pos, int64_t *origin_stat_neg,
                             const bool is_fake_data) {
Q
Qiao Longfei 已提交
96 97
    size_t batch_size = predict->dims()[0];
    size_t inference_width = predict->dims()[1];
T
tangwei12 已提交
98 99
    const T *inference_data = predict->data<T>();
    const auto *label_data = label->data<int64_t>();
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    const int bucket_length = num_thresholds + 1;
    if (slide_steps == 0) {
      for (size_t i = 0; i < batch_size; i++) {
        // if predict_data[i] has dim of 2, then predict_data[i][1] is pos prob
        // if predict_data[i] has dim of 1, then predict_data[i][0] is pos prob
        auto predict_data =
            inference_data[i * inference_width + (inference_width - 1)];
        PADDLE_ENFORCE_LE(predict_data, 1,
                          platform::errors::PreconditionNotMet(
                              "The predict data must less or equal 1."));
        PADDLE_ENFORCE_GE(predict_data, 0,
                          platform::errors::PreconditionNotMet(
                              "The predict data must gather or equal 0."));

        uint32_t binIdx = static_cast<uint32_t>(predict_data * num_thresholds);
Y
yaoxuefeng 已提交
115
        if (label_data[i] > 0) {
116
          origin_stat_pos[binIdx] += 1;
Y
yaoxuefeng 已提交
117
        } else if (label_data[i] == 0) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
          origin_stat_neg[binIdx] += 1;
        }
      }
      return;
    }
    // the last number of origin_stat_pos store the index should be used in
    // current step
    int cur_step_index =
        static_cast<int>(origin_stat_pos[(slide_steps + 1) * bucket_length]) %
        slide_steps;
    int cur_step_begin = cur_step_index * bucket_length;
    int sum_step_begin = slide_steps * bucket_length;
    for (int i = 0; i < bucket_length; ++i) {
      origin_stat_pos[sum_step_begin + i] -=
          origin_stat_pos[cur_step_begin + i];
      origin_stat_neg[sum_step_begin + i] -=
          origin_stat_neg[cur_step_begin + i];
    }

    std::memset(origin_stat_pos + cur_step_begin, 0,
                bucket_length * sizeof(int64_t));
    std::memset(origin_stat_neg + cur_step_begin, 0,
                bucket_length * sizeof(int64_t));
T
tangwei12 已提交
141 142

    for (size_t i = 0; i < batch_size; i++) {
143 144 145 146
      // if predict_data[i] has dim of 2, then predict_data[i][1] is pos prob
      // if predict_data[i] has dim of 1, then predict_data[i][0] is pos prob
      auto predict_data =
          inference_data[i * inference_width + (inference_width - 1)];
T
tangwei12 已提交
147
      PADDLE_ENFORCE_LE(predict_data, 1,
148 149
                        platform::errors::PreconditionNotMet(
                            "The predict data must less or equal 1."));
T
tangwei12 已提交
150
      PADDLE_ENFORCE_GE(predict_data, 0,
151 152
                        platform::errors::PreconditionNotMet(
                            "The predict data must gather or equal 0."));
T
tangwei12 已提交
153 154

      uint32_t binIdx = static_cast<uint32_t>(predict_data * num_thresholds);
Y
yaoxuefeng 已提交
155
      if (label_data[i] > 0) {
156
        origin_stat_pos[cur_step_begin + binIdx] += 1;
Y
yaoxuefeng 已提交
157
      } else if (label_data[i] == 0) {
158
        origin_stat_neg[cur_step_begin + binIdx] += 1;
T
typhoonzero 已提交
159 160
      }
    }
W
wangzhen38 已提交
161 162 163 164 165 166 167
    if (!is_fake_data) {
      for (int i = 0; i < bucket_length; ++i) {
        origin_stat_pos[sum_step_begin + i] +=
            origin_stat_pos[cur_step_begin + i];
        origin_stat_neg[sum_step_begin + i] +=
            origin_stat_neg[cur_step_begin + i];
      }
T
tangwei12 已提交
168 169 170
    }
  }

171 172
  inline static void calcAuc(const int64_t *stat_pos, const int64_t *stat_neg,
                             int num_thresholds, double *auc) {
T
tangwei12 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    *auc = 0.0f;

    double totPos = 0.0;
    double totNeg = 0.0;
    double totPosPrev = 0.0;
    double totNegPrev = 0.0;

    int idx = num_thresholds;

    while (idx >= 0) {
      totPosPrev = totPos;
      totNegPrev = totNeg;
      totPos += stat_pos[idx];
      totNeg += stat_neg[idx];
      *auc += trapezoidArea(totNeg, totNegPrev, totPos, totPosPrev);
      --idx;
T
typhoonzero 已提交
189
    }
T
tangwei12 已提交
190 191 192

    if (totPos > 0.0 && totNeg > 0.0) {
      *auc = *auc / totPos / totNeg;
T
typhoonzero 已提交
193 194 195 196 197 198
    }
  }
};

}  // namespace operators
}  // namespace paddle