lookup_table_op.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/lookup_table_op.h"
16
#include "paddle/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

36 37 38
    PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[1], 1);

Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
41
  }
Y
Yu Yang 已提交
42

43
 protected:
Q
Qiao Longfei 已提交
44
  framework::OpKernelType GetActualKernelType(
Y
Yu Yang 已提交
45
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
46 47 48
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
49
  }
50 51 52 53
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
54
  LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
55 56
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
K
kexinzhao 已提交
57 58
             "An input represents embedding tensors, "
             "which is a learnable parameter.");
59
    AddInput("Ids",
K
kexinzhao 已提交
60 61 62 63 64 65 66 67 68
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "Ids must be a column vector with rank = 2. "
             "The 2nd dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update")
        .SetDefault(false);
69
    AddComment(R"DOC(
K
kexinzhao 已提交
70 71
Lookup Table Operator.

72 73 74
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

K
kexinzhao 已提交
75 76 77
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

78
)DOC");
79 80 81
  }
};

82 83 84 85 86 87 88 89 90
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

91 92 93 94
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

95
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
96 97
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
98
  }
Y
Yu Yang 已提交
99

100
 protected:
Q
Qiao Longfei 已提交
101
  framework::OpKernelType GetActualKernelType(
Y
Yu Yang 已提交
102
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
103 104 105
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
106
  }
107 108
};

109 110
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
111 112
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
113 114 115 116 117 118
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
119 120
      block->Var(out_var_name)
          ->SetType(framework::proto::VarDesc::SELECTED_ROWS);
121 122 123
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
124
      block->Var(out_var_name)->SetType(framework::proto::VarDesc::LOD_TENSOR);
125 126 127 128
    }
  }
};

129 130 131 132
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
133 134 135 136 137 138 139 140 141
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);