api_custom_impl.cc 31.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/api/lib/api_gen_utils.h"
19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
21
#include "paddle/phi/api/lib/tensor_copy.h"
Z
zyfncg 已提交
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24 25
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
26
#include "paddle/phi/infermeta/backward.h"
27 28 29
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/infermeta/unary.h"
31 32 33 34

namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

C
chentianyu03 已提交
37 38 39 40 41 42 43 44
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adamw_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
45 46
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    float lr_ratio,
    float coeff,
    bool with_decay,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "adamw";
76
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
77
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
78
  const auto& kernel = kernel_result.kernel;
C
chentianyu03 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_lr = PrepareData(learning_rate, kernel.InputAt(2), {});
  auto input_moment1 = PrepareData(moment1, kernel.InputAt(3), {});
  auto input_moment2 = PrepareData(moment2, kernel.InputAt(4), {});
  auto input_beta1_pow = PrepareData(beta1_pow, kernel.InputAt(5), {});
  auto input_beta2_pow = PrepareData(beta2_pow, kernel.InputAt(6), {});
92 93
  auto input_master_param = PrepareData(master_param, kernel.InputAt(7), {});
  auto input_skip_update = PrepareData(skip_update, kernel.InputAt(8), {});
C
chentianyu03 已提交
94 95 96 97 98 99 100 101

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_moment1.get();
  auto kernel_out_2 = input_moment2.get();
  auto kernel_out_3 = input_beta1_pow.get();
  auto kernel_out_4 = input_beta2_pow.get();
  phi::DenseTensor* kernel_out_5 = nullptr;
102 103
  if (input_master_param) {
    kernel_out_5 = input_master_param.get_ptr();
C
chentianyu03 已提交
104 105
  }

106
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);
C
chentianyu03 已提交
107

108
  auto input_meta_ref_skip_update = MakeMetaTensor(input_skip_update);
C
chentianyu03 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::AdamwInferMeta(MakeMetaTensor(*input_param),
                      MakeMetaTensor(*input_grad),
                      MakeMetaTensor(*input_lr),
                      MakeMetaTensor(*input_moment1),
                      MakeMetaTensor(*input_moment2),
                      MakeMetaTensor(*input_beta1_pow),
                      MakeMetaTensor(*input_beta2_pow),
                      input_meta_ref_master_param,
                      input_meta_ref_skip_update,
                      beta1,
                      beta2,
                      epsilon,
                      lr_ratio,
                      coeff,
                      with_decay,
                      lazy_mode,
                      min_row_size_to_use_multithread,
                      multi_precision,
                      use_global_beta_pow,
                      &meta_out_0,
                      &meta_out_1,
                      &meta_out_2,
                      &meta_out_3,
                      &meta_out_4,
                      &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
151 152
                                    const paddle::optional<phi::DenseTensor>&,
                                    const paddle::optional<phi::DenseTensor>&,
C
chentianyu03 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                                    const Scalar&,
                                    const Scalar&,
                                    const Scalar&,
                                    float,
                                    float,
                                    bool,
                                    bool,
                                    int64_t,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_lr,
               *input_moment1,
               *input_moment2,
               *input_beta1_pow,
               *input_beta2_pow,
               input_master_param,
               input_skip_update,
               beta1,
               beta2,
               epsilon,
               lr_ratio,
               coeff,
               with_decay,
               lazy_mode,
               min_row_size_to_use_multithread,
               multi_precision,
               use_global_beta_pow,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2,
               kernel_out_3,
               kernel_out_4,
               kernel_out_5);

  return api_output;
}

201
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
202
  Tensor out;
203
  copy(x, place, blocking, &out);
204 205 206
  return out;
}

Z
zyfncg 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  Tensor api_output;

  if (phi::DenseTensor::classof(weight.impl().get())) {
222
    auto kernel_result =
Z
zyfncg 已提交
223 224 225
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
226
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    VLOG(6) << "embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  } else {
251
    auto kernel_result =
Z
zyfncg 已提交
252 253 254
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "sparse_weight_embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
255
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    VLOG(6) << "sparse_weight_embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::SelectedRows&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  }
  return api_output;
}

283
std::vector<Tensor> split_impl(const Tensor& x,
284
                               const IntArray& num_or_sections,
285 286
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
287
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
288 289 290 291

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
292

293
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
294
      "split", {kernel_backend, kernel_layout, kernel_data_type});
295
  const auto& kernel = kernel_result.kernel;
C
chentianyu03 已提交
296 297 298 299 300 301 302 303 304 305
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
306
  if (num_or_sections.size() == 1) {
307 308 309 310 311
    if (num_or_sections.GetData()[0] < 0) {
      out_number = 1;
    } else {
      out_number = num_or_sections.GetData()[0];
    }
C
chentianyu03 已提交
312
  } else {
313
    out_number = num_or_sections.size();
C
chentianyu03 已提交
314 315 316 317
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
318
  std::vector<phi::MetaTensor> meta_outs;
319 320 321
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
322 323
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
324
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
325 326
  }

327
  phi::SplitInferMeta(
328
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
329 330

  using kernel_signature = void (*)(const platform::DeviceContext&,
331
                                    const phi::DenseTensor&,
332
                                    const phi::IntArray&,
333 334
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
335 336 337
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
338
               phi::IntArray(num_or_sections),
339
               phi::Scalar(axis),
C
chentianyu03 已提交
340 341 342 343
               dense_outs);

  return out;
}
344

345 346 347 348 349
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
350
    const paddle::optional<Tensor>& master_param,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
379
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
380
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
381
  const auto& kernel = kernel_result.kernel;
382 383 384 385 386 387 388 389 390 391
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
392
  auto input_master_param = PrepareData(master_param, kernel.InputAt(4), {});
393 394 395 396 397

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
398 399
  if (input_master_param) {
    kernel_out_2 = input_master_param.get_ptr();
400 401
  }

402 403
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
444
                                    const paddle::optional<phi::DenseTensor>&,
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

475 476
////////////////// Backward(grad) api impls //////////////////////

H
hong 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

512
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
H
hong 已提交
513
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
514
  const auto& kernel = kernel_result.kernel;
H
hong 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

607
void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
608 609 610
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
611
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
612
      "imag_grad", kernel_key);
613
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
614 615 616 617 618 619 620 621

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

622
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
623 624 625 626 627 628 629 630 631 632
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

Z
zyfncg 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding_grad API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  if (phi::DenseTensor::classof(weight.impl().get())) {
    std::string kernel_name =
        sparse ? "embedding_sparse_grad" : "embedding_grad";
650
    auto kernel_result =
Z
zyfncg 已提交
651 652 653
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
654
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->dims());
      meta_out.set_dtype(input_weight->dtype());
      kernel_out->set_height(input_weight->dims()[0]);

      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  } else {
    std::string kernel_name = sparse ? "sparse_weight_embedding_sparse_grad"
                                     : "sparse_weight_embedding_grad";
703
    auto kernel_result =
Z
zyfncg 已提交
704 705 706
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
707
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->GetCompleteDims());
      meta_out.set_dtype(input_weight->dtype());
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  }
}

754
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
755 756 757
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
758
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
759
      "real_grad", kernel_key);
760
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
761 762 763 764 765 766 767 768

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

769
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
770 771 772 773 774 775 776 777 778 779
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

780 781
}  // namespace experimental
}  // namespace paddle