tracer.cc 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17 18
#include <set>

M
minqiyang 已提交
19 20 21 22
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

23 24 25 26 27 28 29 30 31
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif

DEFINE_string(
    tracer_profile_fname, "",
    "Profiler filename for imperative tracer, which generated by gperftools."
    "Only valid when compiled `WITH_PROFILER=ON`. Empty if disable.");

32
namespace paddle {
M
minqiyang 已提交
33 34
namespace imperative {

35 36 37 38 39
static std::once_flag gTracerProfileOnce;
#ifdef WITH_GPERFTOOLS
static bool gTracerProfilerStarted = false;
#endif

M
minqiyang 已提交
40 41 42
void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
43
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
44
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
45 46
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
47 48 49
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
J
JiabinYang 已提交
50

X
Xin Pan 已提交
51 52 53
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
54 55
}

M
minqiyang 已提交
56 57 58 59
void InitVar(framework::Variable* var, framework::Variable* grad_var,
             platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
M
minqiyang 已提交
60
  auto& var_t = var->Get<framework::LoDTensor>();
M
minqiyang 已提交
61 62 63
  grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      var_t.dims(), dev_ctx->GetPlace());
  operators::math::set_constant(
M
minqiyang 已提交
64
      *dev_ctx, grad_var->GetMutable<framework::LoDTensor>(), 0.0);
M
minqiyang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
83 84
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98
Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {
  if (!FLAGS_tracer_profile_fname.empty()) {
    std::call_once(gTracerProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
      ProfilerStart(FLAGS_tracer_profile_fname.c_str());
      gTracerProfilerStarted = true;
#else
      LOG(WARNING) << "Paddle is not compiled with gperftools. "
                      "FLAGS_tracer_profile_fname will be ignored";
#endif
    });
  }
}

M
minqiyang 已提交
99 100 101 102 103
std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                                    const VarBasePtrMap& outputs,
                                    framework::BlockDesc* block,
                                    const platform::Place expected_place,
                                    const bool stop_gradient) {
104 105 106 107 108 109
#ifdef WITH_GPERFTOOLS
  if (gTracerProfilerStarted) {
    ProfilerFlush();
  }
#endif

M
minqiyang 已提交
110 111 112 113 114 115
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
M
minqiyang 已提交
116

M
minqiyang 已提交
117 118 119 120 121 122 123 124 125
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
126
    invars.reserve(it.second.size());
M
minqiyang 已提交
127
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
128
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
129 130
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
131
      invars.emplace_back(inp->var_);
M
minqiyang 已提交
132
      vars[inp->var_desc_->Name()] = inp;
M
minqiyang 已提交
133
      if (inp->PreOp() && !inp->IsStopGradient()) {
X
Xin Pan 已提交
134 135
        op->pre_ops_[it.first].push_back(inp->PreOp());
        op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx());
M
minqiyang 已提交
136 137 138 139 140 141 142 143 144 145 146 147
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
148
    outvars.reserve(outputs.size());
M
minqiyang 已提交
149 150
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
151
      outvars.emplace_back(out->var_);
M
minqiyang 已提交
152 153 154 155 156 157 158 159
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
X
Xin Pan 已提交
160
      out->TrackPreOp(op, it.first, i, stop_gradient);
M
minqiyang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
176 177 178
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
X
polish  
Xin Pan 已提交
179 180 181
  prepared_op.func(
      framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
                                  prepared_op.ctx, prepared_op.kernel_configs));
M
minqiyang 已提交
182

M
minqiyang 已提交
183
  std::set<std::string> vars_saved_for_backward;
M
minqiyang 已提交
184

M
minqiyang 已提交
185
  if (!stop_gradient) {
186 187
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
X
Xin Pan 已提交
188 189 190 191
    CreateGradOp(*op_desc, {}, {block}, &op->grad_op_descs_, grad_to_var.get());

    op->grad_input_vars_.resize(op->grad_op_descs_.size());
    op->grad_output_vars_.resize(op->grad_op_descs_.size());
M
minqiyang 已提交
192

X
Xin Pan 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    for (size_t i = 0; i < op->grad_op_descs_.size(); ++i) {
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
        for (const std::string& grad_invar : it.second) {
          block->FindRecursiveOrCreateVar(grad_invar);
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
            auto fwd_var_it = vars.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != vars.end());
            // Forward inputs or outputs.
            grad_in_vars.push_back(fwd_var_it->second->var_);
          } else {
            VarBase* var = vars[var_it->second];
            if (!var->grads_->var_->IsInitialized()) {
              InitVar(var->var_, var->grads_->var_,
                      prepared_op.GetDeviceContext());
            }
            // Douts.
            grad_in_vars.push_back(var->grads_->var_);
          }
M
minqiyang 已提交
214 215

          vars_saved_for_backward.insert(it.first);
X
Xin Pan 已提交
216 217 218 219 220 221 222 223 224 225 226 227
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          block->FindRecursiveOrCreateVar(grad_outvar);
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
                         op_desc->Type());
M
minqiyang 已提交
228
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
229
          if (!var->grads_->var_->IsInitialized()) {
M
minqiyang 已提交
230 231
            InitVar(var->var_, var->grads_->var_,
                    prepared_op.GetDeviceContext());
M
minqiyang 已提交
232
          }
X
Xin Pan 已提交
233
          grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
234 235 236 237 238 239
        }
      }
    }
  }

  op->block_ = block;
M
minqiyang 已提交
240
  return vars_saved_for_backward;
M
minqiyang 已提交
241 242
}

243 244 245 246
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
247 248
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
249
  for (VarBase* inp : inputs) {
M
minqiyang 已提交
250
    if (inp->PreOp() && !inp->IsStopGradient()) {
X
Xin Pan 已提交
251 252
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp());
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx());
253
    } else {
X
Xin Pan 已提交
254
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
255 256 257
    }
  }

X
Xin Pan 已提交
258
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
259 260
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
X
Xin Pan 已提交
261
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
262 263
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
264 265
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
266
    auto& grad_input_vars =
X
Xin Pan 已提交
267
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
268
    auto& grad_output_vars =
X
Xin Pan 已提交
269
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
270 271 272 273 274 275 276

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
M
minqiyang 已提交
277 278

    platform::CPUPlace place;
279
    for (VarBase* out : outputs) {
M
minqiyang 已提交
280
      grad_input_vars.push_back(out->grads_->var_);
281
      if (!grad_input_vars.back()->IsInitialized()) {
M
minqiyang 已提交
282 283 284
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(out->var_, grad_input_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
285 286
      }
    }
M
minqiyang 已提交
287

288
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
289
      grad_output_vars.push_back(inp->grads_->var_);
290
      if (!grad_output_vars.back()->IsInitialized()) {
M
minqiyang 已提交
291 292 293
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(inp->var_, grad_output_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
294 295 296 297 298 299
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
300
}  // namespace imperative
301
}  // namespace paddle