SequenceConcatLayer.cpp 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for concatenating the first sequence with the second sequence
 * following the first
 * Input: two sequences each containing some instances
 * Output: a concatenated sequence of the two input sequences
 */

class SequenceConcatLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;

public:
  explicit SequenceConcatLayer(const LayerConfig& config) : Layer(config) {}

  ~SequenceConcatLayer() {}

Y
Yu Yang 已提交
38 39
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
40

Y
Yu Yang 已提交
41 42
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
Z
zhangjinchao01 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
};

REGISTER_LAYER(seqconcat, SequenceConcatLayer);

bool SequenceConcatLayer::init(const LayerMap& layerMap,
                               const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  // sequene concatenation layer should have exactly 2 inputs
  CHECK_EQ(2U, inputLayers_.size());

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }

  setNeedSequenceInfo(false);
  return true;
}

void SequenceConcatLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t dim = getSize();

  const Argument& input1 = getInput(0);
  size_t numSequences1 = input1.getNumSequences();
71
  auto startPositions1 = input1.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
72 73 74

  const Argument& input2 = getInput(1);
  size_t numSequences2 = input2.getNumSequences();
75
  auto startPositions2 = input2.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  CHECK_EQ(dim, input1.value->getWidth());
  CHECK_EQ(startPositions1->getData()[numSequences1], input1.getBatchSize());
  CHECK_EQ(numSequences1, startPositions1->getSize() - 1);

  CHECK_EQ(dim, input2.value->getWidth());
  CHECK_EQ(startPositions2->getData()[numSequences2], input2.getBatchSize());
  CHECK_EQ(numSequences2, startPositions2->getSize() - 1);

  CHECK_EQ(numSequences1, numSequences2);

  MatrixPtr inputValue1 = getInputValue(0);
  MatrixPtr inputValue2 = getInputValue(1);

  // reset output
  reserveOutput(inputValue1->getHeight() + inputValue2->getHeight(), dim);

  MatrixPtr outputValue = getOutputValue();

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerForward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
      outputValue->subMatrix(offset, leftNumIns)
          ->assign(*(inputValue1->subMatrix(starts1[seqId], leftNumIns)));
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
      outputValue->subMatrix(offset, rightNumIns)
          ->assign(*(inputValue2->subMatrix(starts2[seqId], rightNumIns)));
      offset += rightNumIns;
    }

    // modify the sequenceStartPositions
118 119
    ICpuGpuVector::resizeOrCreate(
        output_.sequenceStartPositions, numSequences1 + 1, false);
Z
zhangjinchao01 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);

    for (size_t seqId = 0; seqId < numSequences1 + 1; ++seqId) {
      tgtBuf[seqId] = starts1[seqId] + starts2[seqId];
    }
  }

  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */
  forwardActivation();
}

void SequenceConcatLayer::backward(const UpdateCallback& callback) {
  /* activation */
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr inputGrad1 = getInputGrad(0);
  MatrixPtr inputGrad2 = getInputGrad(1);
  MatrixPtr outputGrad = getOutputGrad();
151 152
  auto startPositions1 = getInput(0).sequenceStartPositions->getVector(false);
  auto startPositions2 = getInput(1).sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  size_t numSequences1 = startPositions1->getSize() - 1;
  size_t numSequences2 = startPositions2->getSize() - 1;

  CHECK_EQ(numSequences1, numSequences2);

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerBackward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
171 172 173 174
      if (inputGrad1) {
        inputGrad1->subMatrix(starts1[seqId], leftNumIns)
            ->add(*(outputGrad->subMatrix(offset, leftNumIns)));
      }
Z
zhangjinchao01 已提交
175 176 177
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
178 179 180 181
      if (inputGrad2) {
        inputGrad2->subMatrix(starts2[seqId], rightNumIns)
            ->add(*(outputGrad->subMatrix(offset, rightNumIns)));
      }
Z
zhangjinchao01 已提交
182 183 184 185 186 187
      offset += rightNumIns;
    }
  }
}

}  // namespace paddle