test_engine.cc 8.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
22
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
32 33
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));

34
    engine_ = new TensorRTEngine(10, 1 << 10);
Y
Yan Chunwei 已提交
35 36 37
    engine_->InitNetwork();
  }

N
nhzlx 已提交
38 39 40 41 42 43
  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }
N
nhzlx 已提交
44 45 46 47 48 49 50 51 52

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
    TensorFromVector(input, *ctx_, &input_);
    output_.Resize(framework::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
53 54 55
  }

 protected:
N
nhzlx 已提交
56 57 58 59
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
68 69
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
70 71 72
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
N
nhzlx 已提交
73
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
Y
Yan Chunwei 已提交
74
                                  nvinfer1::DimsCHW{1, 1, 1});
N
nhzlx 已提交
75
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
Y
Yan Chunwei 已提交
76
                                        weight.get(), bias.get());
77 78 79
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
Y
Yan Chunwei 已提交
80 81 82 83 84 85 86

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
87 88 89 90 91 92 93 94 95 96
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

Y
Yan Chunwei 已提交
97
  LOG(INFO) << "to execute";
98
  engine_->Execute(1, &buffers, ctx_->stream());
Y
Yan Chunwei 已提交
99 100

  LOG(INFO) << "to get output";
N
nhzlx 已提交
101
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
102 103

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
104
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
Y
Yan Chunwei 已提交
105 106
}

X
Xin Pan 已提交
107 108 109 110 111 112
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
113
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
114 115 116

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
N
nhzlx 已提交
117
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
X
Xin Pan 已提交
118
                                  nvinfer1::DimsCHW{1, 2, 1});
N
nhzlx 已提交
119
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
X
Xin Pan 已提交
120
                                        weight.get(), bias.get());
121 122 123
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
X
Xin Pan 已提交
124 125 126 127 128

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
129 130 131 132 133 134 135 136 137 138 139
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

140
  engine_->Execute(1, &buffers, ctx_->stream());
X
Xin Pan 已提交
141 142

  LOG(INFO) << "to get output";
N
nhzlx 已提交
143
  GetOutput(&y_cpu);
N
nhzlx 已提交
144

145 146 147 148
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
149

X
Xin Pan 已提交
150 151 152 153
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

154
TEST_F(TensorRTEngineTest, test_conv2d) {
155 156 157
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
158
  std::vector<void *> buffers(2);  // TRT binded inputs
159 160 161

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
N
nhzlx 已提交
162
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
163
                                  nvinfer1::Dims3{1, 3, 3});
N
nhzlx 已提交
164
  auto *conv_layer =
165 166
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
167 168 169
  PADDLE_ENFORCE_NOT_NULL(conv_layer,
                          platform::errors::InvalidArgument(
                              "TRT convolution layer building failed."));
170 171 172 173 174 175 176
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
177 178 179 180 181 182 183 184 185 186 187 188
  // fill in real data
  std::vector<float> x_v = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

189
  engine_->Execute(2, &buffers, ctx_->stream());
190 191

  LOG(INFO) << "to get output";
N
nhzlx 已提交
192 193
  GetOutput(&y_cpu);

194 195 196 197
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

198 199
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
N
nhzlx 已提交
200
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
201 202
                                  nvinfer1::Dims3{1, 2, 2});

N
nhzlx 已提交
203
  std::vector<void *> buffers(2);  // TRT binded inputs
204
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
205 206
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *x, pool_t,
                                          nvinfer1::DimsHW{2, 2});
207

208 209 210
  PADDLE_ENFORCE_NOT_NULL(
      pool_layer,
      platform::errors::InvalidArgument("TRT pooling layer building failed."));
211 212 213 214 215 216 217
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
218 219 220 221 222 223 224 225 226 227 228
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

229
  engine_->Execute(2, &buffers, ctx_->stream());
230 231

  LOG(INFO) << "to get output";
N
nhzlx 已提交
232
  GetOutput(&y_cpu);
233 234 235 236 237

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
238 239 240
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle