io.py 33.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
20
import sys
Y
yuyang18 已提交
21
import threading
D
dzhwinter 已提交
22

Y
yuyang18 已提交
23
from ..data_feeder import DataFeeder
24 25
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
26
from .. import core
Y
Refine  
Yu Yang 已提交
27
from ..executor import global_scope
Y
yuyang18 已提交
28
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
29
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
30 31
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
32
import logging
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
__all__ = [
35 36
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
37
]
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
48
    **Data Layer**
Y
Yu Yang 已提交
49

G
guofei 已提交
50 51
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
52

G
guofei 已提交
53 54 55
    Note: 
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in 
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
56

G
guofei 已提交
57 58 59 60
        The :code:`paddle.fluid.layers.data` set shape and dtype at compile time
        but does NOT check the shape or the dtype of feeded data, this
        :code:`paddle.fluid.data` checks the shape and the dtype of data feeded 
        by Executor or ParallelExecutor during run time.
61

K
kavyasrinet 已提交
62
    Args:
G
guofei 已提交
63 64
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
S
sneaxiy 已提交
65
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
G
guofei 已提交
66 67 68
            True and there is no -1 inside :code:`shape`, it should be 
            considered as the shape of the each sample. Otherwise, it should
            be considered as the shape of the batched data.  
X
Xin Pan 已提交
69 70
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
71 72 73 74 75 76
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
77 78 79 80
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR. 
K
kavyasrinet 已提交
81
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
82
            Default: 0.
K
kavyasrinet 已提交
83
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
G
guofei 已提交
84
            Default: True. 
K
kavyasrinet 已提交
85 86

    Returns:
G
guofei 已提交
87 88 89 90
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
91 92 93 94

    Examples:
        .. code-block:: python

95
          import paddle.fluid as fluid
K
kavyasrinet 已提交
96
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
97 98 99
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
100
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
110
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
111 112 113 114 115
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
116 117
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
118
    return data_var
T
typhoonzero 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
144
    **ListenAndServ Layer**
T
typhoonzero 已提交
145

Y
yi.wu 已提交
146 147 148 149 150 151 152 153 154
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
155

Y
yi.wu 已提交
156 157 158
    Examples:
        .. code-block:: python

159
            import paddle.fluid as fluid
Y
yi.wu 已提交
160 161 162 163 164 165 166 167 168 169 170 171
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
172 173
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
174 175
    """

Y
Yancey1989 已提交
176
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
177
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
178
        self.inputs = inputs
T
typhoonzero 已提交
179 180 181
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
182 183
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
184
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
198 199 200 201 202 203 204 205
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
206 207
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
208 209 210

        return params, grads

T
typhoonzero 已提交
211 212 213 214 215 216 217
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
218 219 220 221 222 223
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
224
            type='listen_and_serv',
Y
Yancey1989 已提交
225
            inputs={"X": self.inputs},
T
typhoonzero 已提交
226 227 228 229
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
230 231 232
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
233
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
234
                'grad_to_block_id': [""]
T
typhoonzero 已提交
235 236 237
            })


238
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
239
    """
Y
yi.wu 已提交
240 241
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
242 243

    Args:
Y
yi.wu 已提交
244
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
245
                   of send_vars to send
Y
yi.wu 已提交
246 247
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
248 249 250 251

    """
    assert (type(send_vars) == list)

252 253 254 255 256 257 258
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
259
    epmap = endpoints.split(",")
T
typhoonzero 已提交
260
    endpoints = list(set(epmap))
T
typhoonzero 已提交
261 262

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
263
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
264

T
typhoonzero 已提交
265 266 267
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
268
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
269 270 271 272 273
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
274
    if sync:
W
Wu Yi 已提交
275 276 277 278 279
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
280 281


282
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
283
    """
Y
yi.wu 已提交
284
    Receive variables from server side
285 286

    Args:
Y
yi.wu 已提交
287
        endpoints (str): comma seperated IP:PORT pairs in the order
288
                   of send_vars to send
Y
yi.wu 已提交
289 290
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
291

Y
yi.wu 已提交
292 293
    Returns:
        list: list of received variables
294 295 296
    """
    assert (type(get_vars) == list)

297 298 299 300 301 302 303
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

304 305 306 307 308 309
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
310
        inputs={"X": dummy_input},
311 312 313
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
314
    if sync:
W
Wu Yi 已提交
315 316 317 318
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
319
    return get_vars
Y
Yu Yang 已提交
320 321


Y
Refine  
Yu Yang 已提交
322 323 324 325 326 327 328 329 330 331
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
332 333
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
334 335 336
    return reader


Y
Yu Yang 已提交
337 338 339 340
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
341
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
342
    new_var.persistable = True
F
fengjiayi 已提交
343 344 345 346
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
363
    new_op = block.append_op(
F
fengjiayi 已提交
364 365 366
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
367
        attrs=op.all_attrs())
F
fengjiayi 已提交
368
    return new_op
Y
Yu Yang 已提交
369 370


Q
Qiao Longfei 已提交
371 372 373 374 375 376
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
377
               feed_list=None):
378

Q
Qiao Longfei 已提交
379 380 381 382 383 384 385 386 387 388
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
389 390 391 392 393 394
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
417
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
Q
Qiao Longfei 已提交
418 419 420 421

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
422
        type='create_py_reader',
Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
                feed_queue.close()
473
                logging.warn('Your decorated reader has raised an exception!')
474
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
499
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
500 501 502 503 504 505 506
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
507
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
524 525 526

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
527 528 529 530 531
    reader.start = __start__

    return reader


Y
yuyang18 已提交
532 533 534 535 536
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
537
              use_double_buffer=True):
S
sneaxiy 已提交
538
    """
539
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
540

G
guofei 已提交
541
    This operator returns a Reader Variable.
542 543
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
G
guofei 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557
    source and feed the data from the data source to the Reader Variable. 
    When :code:`Executor::Run()` is invoked in C++ side, the data from the 
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
    the data reading process and :code:`Executor::Run()` process can run in 
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
    should be called when each pass begins, while the :code:`reset()` method 
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can 
       refer to :ref:`api_fluid_Program` for more details.
       
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
558 559

    Args:
560
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
G
guofei 已提交
561 562 563 564
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i] 
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
565
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
566 567 568 569 570 571
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is 
            for pre-reading the data of the next batch and copy the data asynchronously 
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
572 573

    Returns:
G
guofei 已提交
574 575 576 577
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
578 579

    Examples:
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
             # user defined network, here a softmax regresssion example
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
607 608 609 610 611
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
612 613 614 615 616 617 618 619

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
646 647
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
688
    """
689 690
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
691
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
692 693 694 695 696 697
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
698
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
699 700


Q
Qiao Longfei 已提交
701 702 703 704 705
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
706 707 708 709 710 711 712 713 714 715 716 717 718
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
719

Q
Qiao Longfei 已提交
720
    Returns:
721
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
722

Q
Qiao Longfei 已提交
723
    Examples:
724
        .. code-block:: python
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
          loss = network(img, label) # The definition of custom network and the loss funtion

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
768
    """
769 770 771
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
772 773 774 775 776 777 778 779
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
780 781


J
JiayiFeng 已提交
782
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
783 784 785
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
786
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
787 788 789 790 791
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
792 793 794 795
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
796 797


798 799
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
800 801 802 803 804 805 806 807 808 809
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


810
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
811
    """
L
liu zhengxi 已提交
812
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
813 814


L
liu zhengxi 已提交
815 816 817 818
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
        place (Place, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
Y
yuyang18 已提交
819 820

    Returns:
L
liu zhengxi 已提交
821
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
822 823

    Examples:
L
liu zhengxi 已提交
824
        ..  code-block:: python
825
          
L
liu zhengxi 已提交
826 827 828 829 830 831 832
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
833
    """
Y
Yu Yang 已提交
834 835 836
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
837 838
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
839 840


F
fengjiayi 已提交
841
def read_file(reader):
F
fengjiayi 已提交
842
    """
F
fengjiayi 已提交
843
    Execute the given reader and get data via it.
F
fengjiayi 已提交
844

845 846
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
847
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
848 849 850

    Args:

F
fengjiayi 已提交
851
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
852 853

    Returns:
854
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
855 856 857

    Examples:
        .. code-block:: python
858 859
          
           import paddle.fluid as fluid
860 861 862 863
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
864
    """
Y
Yu Yang 已提交
865 866
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
867
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
868
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
869
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
870 871
    ]
    helper.append_op(
F
fengjiayi 已提交
872
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
873 874 875 876
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
877 878


Y
yuyang18 已提交
879 880
def load(out, file_path, load_as_fp16=None):
    """
881
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
882 883

    Args:
884
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
885

886
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
887

888
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
889 890
    Returns:
        None
891 892 893 894 895 896 897

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
898 899 900 901 902
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
903
    helper.append_op(type="load", inputs={}, output={"Out": out}, attrs=attrs)