test_imperative_save_load.py 33.8 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
H
hong 已提交
18 19 20
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
H
hong 已提交
21
from paddle.fluid.dygraph.nn import Embedding, Linear
H
hong 已提交
22 23 24 25 26 27 28
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.learning_rate_scheduler import LearningRateDecay
from test_imperative_base import new_program_scope
import numpy as np
import six
29
import paddle
H
hong 已提交
30 31 32 33 34 35 36 37 38


class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
39
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
142
        super(PtbModel, self).__init__()
H
hong 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = Embedding(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))

164 165 166 167 168 169 170 171 172 173 174 175
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
H
hong 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])

197 198
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
H
hong 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


class TestDygraphPtbRnn(unittest.TestCase):
    def setUp(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
            lr_arr = [1.0]
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                new_lr = 1.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
242 243 244 245
            adam = Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr_arr),
                parameter_list=ptb_model.parameters())
H
hong 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
                    for param in ptb_model.parameters():
                        dy_param_init[param.name] = param.numpy()
                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
                        dy_param_updated[param.name] = param.numpy()

            # check optimizer
            self.opti_dict = adam.state_dict()
            self.base_opti = {}
            for k, v in self.opti_dict.items():
                self.base_opti[v.name] = v.numpy()
                self.assertTrue(np.sum(np.abs(v.numpy())) != 0)

            fluid.save_dygraph(self.opti_dict, "./test_dy")

            self.state_dict = ptb_model.state_dict()
H
hong 已提交
286

H
hong 已提交
287 288 289
            self.model_base = {}
            for k, v in self.state_dict.items():
                np_t = v.numpy()
H
hong 已提交
290
                self.model_base[k] = np_t
H
hong 已提交
291

292
            paddle.imperative.save(self.state_dict, "./test_dy")
H
hong 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    def testLoadAndSetVarBase(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
            lr_arr = [1.0]
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                new_lr = 1.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
325 326 327 328
            adam = Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr_arr),
                parameter_list=ptb_model.parameters())
H
hong 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
                    for param in ptb_model.parameters():
                        dy_param_init[param.name] = param.numpy()
                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
                        dy_param_updated[param.name] = param.numpy()

            # check optimizer
            opti_dict = adam.state_dict()
            # set to zero
            for k, v in opti_dict.items():
                np_t = v.numpy()
364
                var = v.value().get_tensor()
H
hong 已提交
365 366 367 368 369 370 371
                var.set(np.zeros_like(np_t), place)

                self.assertTrue(np.sum(np.abs(v.numpy())) == 0)

            if isinstance(adam._learning_rate, LearningRateDecay):
                adam._learning_rate.step_num = 0

372 373
            para_state_dict, opti_state_dict = paddle.imperative.load(
                "./test_dy")
H
hong 已提交
374 375 376 377 378 379 380 381 382 383 384
            adam.set_dict(opti_state_dict)

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                self.assertTrue(
                    np.array_equal(v.numpy(), self.base_opti[v.name]))

            # check parameter
            state_dict = ptb_model.state_dict()
            for k, v in state_dict.items():
                np_t = v.numpy()
385
                var = v.value().get_tensor()
H
hong 已提交
386 387 388 389 390 391 392 393 394 395

                var.set(np.zeros_like(np_t), place)

            ptb_model.set_dict(para_state_dict)

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
396
                base_t = self.model_base[k]
H
hong 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

                self.assertTrue(np.array_equal(new_t, base_t))

    def testSetVariable(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
            lr_arr = [1.0]
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                new_lr = 1.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
431 432 433 434
            adam = Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr_arr),
                parameter_list=ptb_model.parameters())
H
hong 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
                    for param in ptb_model.parameters():
                        dy_param_init[param.name] = param.numpy()
                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
                        dy_param_updated[param.name] = param.numpy()

            # check optimizer
            opti_dict = adam.state_dict()
            # set to zero
            for k, v in opti_dict.items():
                np_t = v.numpy()
470
                var = v.value().get_tensor()
H
hong 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                var.set(np.zeros_like(np_t), place)

                self.assertTrue(np.sum(np.abs(v.numpy())) == 0)

            if isinstance(adam._learning_rate, LearningRateDecay):
                adam._learning_rate.step_num = 0

            adam.set_dict(self.opti_dict)

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                self.assertTrue(
                    np.array_equal(v.numpy(), self.base_opti[v.name]))

            # check parameter
            state_dict = ptb_model.state_dict()
            for k, v in state_dict.items():
                np_t = v.numpy()
489
                var = v.value().get_tensor()
H
hong 已提交
490 491 492 493 494 495 496 497 498 499

                var.set(np.zeros_like(np_t), place)

            ptb_model.set_dict(self.state_dict)

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
500
                base_t = self.model_base[k]
H
hong 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

                self.assertTrue(np.array_equal(new_t, base_t))

    def testSetNumpy(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
            lr_arr = [1.0]
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                new_lr = 1.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
535 536 537 538
            adam = Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr_arr),
                parameter_list=ptb_model.parameters())
H
hong 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
                    for param in ptb_model.parameters():
                        dy_param_init[param.name] = param.numpy()
                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
                        dy_param_updated[param.name] = param.numpy()

            # check optimizer
            opti_dict = adam.state_dict()
            np_opti_dict = {}
            # set to zero
            for k, v in opti_dict.items():
                np_t = v.numpy()
                np_opti_dict[v.name] = np_t
576
                var = v.value().get_tensor()
H
hong 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                var.set(np.zeros_like(np_t), place)

                self.assertTrue(np.sum(np.abs(v.numpy())) == 0)

            if isinstance(adam._learning_rate, LearningRateDecay):
                adam._learning_rate.step_num = 0

            adam.set_dict(np_opti_dict)

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                self.assertTrue(
                    np.array_equal(v.numpy(), self.base_opti[v.name]))

            # check parameter
            state_dict = ptb_model.state_dict()
            np_state_dict = {}
            for k, v in state_dict.items():
                np_t = v.numpy()
H
hong 已提交
596
                np_state_dict[k] = np_t
597
                var = v.value().get_tensor()
H
hong 已提交
598 599 600 601 602 603 604 605 606 607

                var.set(np.zeros_like(np_t), place)

            ptb_model.set_dict(np_state_dict)

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
608
                base_t = self.model_base[k]
H
hong 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

                self.assertTrue(np.array_equal(new_t, base_t))

    def testSetVariableBeforeTrain(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            adam = Adam(
H
hong 已提交
636
                learning_rate=0.0,
H
hong 已提交
637
                beta1=0.8,
638 639
                beta2=0.6,
                parameter_list=ptb_model.parameters())
H
hong 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            adam.set_dict(self.opti_dict)
            ptb_model.set_dict(self.state_dict)

            for i in range(1):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)

                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                if k == "global_step":
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] + 1))

                if k.find("beta1_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta1))
                if k.find("beta2_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta2))

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
688
                base_t = self.model_base[k]
H
hong 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
                self.assertTrue(np.array_equal(new_t, base_t))

    def testLoadAndSetVarBaseBeforeTrain(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
H
hong 已提交
713
            lr_arr = [0.0]
H
hong 已提交
714 715 716 717 718 719 720 721 722 723
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                # set lr to zero not update parameter
                new_lr = 0.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            adam = Adam(
H
hong 已提交
724
                learning_rate=0.0,
H
hong 已提交
725
                beta1=0.8,
726 727
                beta2=0.6,
                parameter_list=ptb_model.parameters())
H
hong 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            state_dict, opti_dict = fluid.load_dygraph("./test_dy")
            adam.set_dict(opti_dict)
            ptb_model.set_dict(state_dict)

            for i in range(1):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)

                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                if k == "global_step":
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] + 1))

                if k.find("beta1_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta1))
                if k.find("beta2_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta2))

            # check parameter

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
779
                base_t = self.model_base[k]
H
hong 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
                self.assertTrue(np.array_equal(new_t, base_t))

    def testSetNumpyBeforeTrain(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            bd = []
H
hong 已提交
804
            lr_arr = [0.0]
H
hong 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817
            # this a fake lr decay strategy
            for i in range(1, 10):
                bd.append(100 * i)
                # set lr to 0.0, not update parameter
                new_lr = 0.0
                lr_arr.append(new_lr)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            adam = Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr_arr),
                beta1=0.8,
818 819
                beta2=0.6,
                parameter_list=ptb_model.parameters())
H
hong 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832
            dy_param_updated = dict()
            dy_param_init = dict()
            dy_loss = None
            last_hidden = None
            last_cell = None

            np_opti_dict = {}
            np_state_dict = {}

            for k, v in self.opti_dict.items():
                np_opti_dict[v.name] = v.numpy()

            for k, v in self.state_dict.items():
H
hong 已提交
833
                np_state_dict[k] = v.numpy()
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

            adam.set_dict(np_opti_dict)
            ptb_model.set_dict(np_state_dict)
            for i in range(1):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)

                dy_loss.backward()
                adam.minimize(dy_loss)
                ptb_model.clear_gradients()

            opti_dict = adam.state_dict()
            for k, v in opti_dict.items():
                if k == "global_step":
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] + 1))

                if k.find("beta1_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta1))
                if k.find("beta2_pow_acc_0") > 0:
                    self.assertTrue(
                        np.array_equal(v.numpy(), self.base_opti[v.name] *
                                       adam._beta2))

            # check parameter

            state_dict = ptb_model.state_dict()

            for k, v in state_dict.items():
                new_t = v.numpy()

H
hong 已提交
878
                base_t = self.model_base[k]
H
hong 已提交
879 880 881 882
                self.assertTrue(np.array_equal(new_t, base_t))

    def testOnlyLoadParams(self):
        with fluid.dygraph.guard():
883
            emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
884
            state_dict = emb.state_dict()
885 886
            paddle.imperative.save(state_dict,
                                   os.path.join('saved_dy', 'emb_dy'))
H
hong 已提交
887

888
            para_state_dict, opti_state_dict = paddle.imperative.load(
889
                os.path.join('saved_dy', 'emb_dy'))
H
hong 已提交
890 891 892

            self.assertTrue(opti_state_dict == None)

893
            para_state_dict, opti_state_dict = paddle.imperative.load(
894 895
                os.path.join('saved_dy', 'emb_dy.pdparams'))

896
            para_state_dict, opti_state_dict = paddle.imperative.load(
897 898
                os.path.join('saved_dy', 'emb_dy.pdopt'))

H
hong 已提交
899 900 901

if __name__ == '__main__':
    unittest.main()