activation_mkldnn_op.cc 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29 30

namespace {
K
Krzysztof Binias 已提交
31 32
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
33 34 35 36 37 38 39 40
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
41
}
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
}  // namespace

template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input OutGrad tensor");

    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
                     mkldnn::algorithm algorithm, const T alpha = 0,
                     const T beta = 0) {
88 89 90 91 92
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

93 94
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
95

96 97
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
98

99
  PADDLE_ENFORCE(x->dims().size() == 2 || x->dims().size() == 4,
100
                 "Input dim must be with 2 or 4");
101 102 103 104 105

  std::vector<int> src_tz = framework::vectorize2int(x->dims());

  auto src_format =
      src_tz.size() == 2 ? mkldnn::memory::format::nc : x->format();
106

K
Krzysztof Binias 已提交
107
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
108 109
  const std::string key_src_data =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
110 111 112 113 114 115 116 117 118 119 120 121 122
  const std::string key_src_layout =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_layout";
  const std::string key_with_layout = key + std::to_string(src_format);
  const std::string key_src_mem = key_with_layout + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key_with_layout + "@eltwise_fwd_dst_mem";
  const std::string key_fwd = key_with_layout + "@eltwise_fwd";
  const std::string key_fwd_pd = key_with_layout + "@eltwise_fwd_pd";

  // save input data and layout to be referred in backward path
  auto p_src_data = std::make_shared<const T *>(x_data);
  dev_ctx.SetBlob(key_src_data, p_src_data);
  auto p_src_layout = std::make_shared<memory::format>(src_format);
  dev_ctx.SetBlob(key_src_layout, p_src_layout);
K
Krzysztof Binias 已提交
123

K
Krzysztof Binias 已提交
124 125
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
126

127
  std::shared_ptr<memory> dst_memory;
K
Krzysztof Binias 已提交
128

K
Krzysztof Binias 已提交
129
  if (p_fwd == nullptr) {
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    // create mkldnn memory for input X
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), src_format);
    auto src_memory = std::shared_ptr<memory>(
        new memory({src_md, mkldnn_engine}, to_void_cast(x_data)));
    // save src_memory to be referred in backward path
    dev_ctx.SetBlob(key_src_mem, src_memory);

    // create primitive descriptor for activation forward and save it
    auto forward_desc = mkldnn::eltwise_forward::desc(
        mkldnn::prop_kind::forward_training, algorithm,
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        forward_desc, mkldnn_engine);

    // save prim desc into global device context to be referred in backward path
    dev_ctx.SetBlob(key_fwd_pd, forward_pd);

    // create mkldnn memory for output y
    dst_memory =
        std::make_shared<memory>(forward_pd->dst_primitive_desc(), y_data);

    dev_ctx.SetBlob(key_dst_mem, dst_memory);

    // create activation primitive
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(*forward_pd, *src_memory,
                                                      *dst_memory);
K
Krzysztof Binias 已提交
157 158
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
159
    // primitives already exist
160
    auto src_memory =
K
Krzysztof Binias 已提交
161
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
162 163 164
    PADDLE_ENFORCE(src_memory != nullptr,
                   "Fail to find eltwise src_memory in device context.");
    dst_memory =
K
Krzysztof Binias 已提交
165
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
166 167
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find eltwise dst_memory in device context.");
K
Krzysztof Binias 已提交
168

169 170
    src_memory->set_data_handle(platform::to_void_cast(x_data));
    dst_memory->set_data_handle(y_data);
K
Krzysztof Binias 已提交
171
  }
172 173

  // push primitive to stream and wait until it's executed
174 175 176 177 178 179
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_fwd);
  stream(stream::kind::eager).submit(pipeline).wait();

  y->set_layout(DataLayout::kMKLDNN);
  y->set_format(GetMKLDNNFormat(*dst_memory));
180 181
}

182 183 184 185
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
                  mkldnn::algorithm algorithm, const T alpha = 0,
                  const T beta = 0) {
186 187 188
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

189 190
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
191

192 193
  const T *diff_y_data = diff_y->data<T>();
  T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
194

195
  std::vector<int> diff_dst_tz = framework::vectorize2int(diff_y->dims());
K
Krzysztof Binias 已提交
196

197 198
  auto diff_y_format =
      diff_dst_tz.size() == 2 ? mkldnn::memory::format::nc : diff_y->format();
K
Krzysztof Binias 已提交
199

200
  const std::string key = gethash(diff_dst_tz, algorithm);
K
Krzysztof Binias 已提交
201 202
  const std::string key_src_data =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  const std::string key_src_layout =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_layout";
  const auto p_src_layout =
      std::static_pointer_cast<memory::format>(dev_ctx.GetBlob(key_src_layout));
  const std::string key_src_mem =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_src_mem";
  const std::string key_fwd_pd =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_pd";
  const std::string key_with_layouts =
      key + std::to_string(*p_src_layout) + "-" + std::to_string(diff_y_format);
  const std::string key_diff_src_mem =
      key_with_layouts + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem =
      key_with_layouts + "@eltwise_diff_dst_mem";
  const std::string key_grad = key_with_layouts + "@eltwise_grad";

K
Krzysztof Binias 已提交
219 220 221
  const auto p_src_data =
      std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));

222
  auto src_memory =
K
Krzysztof Binias 已提交
223
      std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
224 225 226 227 228
  PADDLE_ENFORCE(src_memory != nullptr,
                 "Fail to find src_memory in device context");
  src_memory->set_data_handle(*p_src_data.get());

  std::shared_ptr<memory> diff_src_memory;
K
Krzysztof Binias 已提交
229

230
  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_backward>(
K
Krzysztof Binias 已提交
231 232 233
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    // create mkldnn memory for input diff_y
    auto diff_dst_md = platform::MKLDNNMemDesc(
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), diff_y_format);
    auto diff_dst_memory = std::shared_ptr<memory>(
        new memory({diff_dst_md, mkldnn_engine}, to_void_cast(diff_y_data)));
    dev_ctx.SetBlob(key_diff_dst_mem, diff_dst_memory);

    // retrieve eltwise primitive desc from device context
    auto forward_pd =
        std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fwd_pd));
    PADDLE_ENFORCE(forward_pd != nullptr,
                   "Fail to find eltwise_fwd_pd in device context");

    // ceate primitive descriptor for activation backward
    auto backward_desc = mkldnn::eltwise_backward::desc(
        algorithm, diff_dst_memory->get_primitive_desc().desc(),
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto backward_pd = mkldnn::eltwise_backward::primitive_desc(
        backward_desc, mkldnn_engine, *forward_pd);

    // create mkldnn memory for output diff_src
    diff_src_memory = std::make_shared<memory>(
        backward_pd.diff_src_primitive_desc(), diff_x_data);
    dev_ctx.SetBlob(key_diff_src_mem, diff_src_memory);

    // create activation backward primitive
K
Krzysztof Binias 已提交
261
    p_grad = std::make_shared<mkldnn::eltwise_backward>(
262 263
        backward_pd, *src_memory, *diff_dst_memory, *diff_src_memory);
    dev_ctx.SetBlob(key_grad, p_grad);
K
Krzysztof Binias 已提交
264 265
  } else {
    // primitives already exist
266
    diff_src_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
267
        dev_ctx.GetBlob(key_diff_src_mem));
268
    auto diff_dst_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
269 270
        dev_ctx.GetBlob(key_diff_dst_mem));

271 272 273 274
    diff_src_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_x_data));
    diff_dst_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_y_data));
K
Krzysztof Binias 已提交
275
  }
276 277

  // push primitive to stream and wait until it's executed
278 279 280 281 282 283
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_grad);
  stream(stream::kind::eager).submit(pipeline).wait();

  diff_x->set_layout(DataLayout::kMKLDNN);
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory));
284 285 286 287
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
288
  void operator()(const framework::ExecutionContext &ctx) const {
289 290 291 292 293 294
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
295
  void operator()(const framework::ExecutionContext &ctx) const {
296 297 298 299 300
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
T
tensor-tang 已提交
301
using ReluMKLDNNFunctor =
302 303 304
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
305
using TanhMKLDNNFunctor =
306 307 308
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
309
using SqrtMKLDNNFunctor =
310 311 312
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
313
using AbsMKLDNNFunctor =
314 315 316
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
317
using ReluMKLDNNGradFunctor =
318 319 320
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
321
using TanhMKLDNNGradFunctor =
322 323 324
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
325
using SqrtMKLDNNGradFunctor =
326 327 328
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
329
using AbsMKLDNNGradFunctor =
330 331 332 333 334 335 336 337 338 339 340 341 342
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
343
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
T
tensor-tang 已提交
344 345 346 347
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
348 349

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);