gpu_primitives.h 15.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#ifdef PADDLE_WITH_CUDA
17
#include <cuda.h>
18 19 20 21
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif
22
#include <stdio.h>
23
#include "paddle/fluid/platform/bfloat16.h"
24
#include "paddle/fluid/platform/complex.h"
25
#include "paddle/fluid/platform/float16.h"
26 27 28 29 30

namespace paddle {
namespace platform {

#define CUDA_ATOMIC_WRAPPER(op, T) \
31
  __device__ __forceinline__ T CudaAtomic##op(T *address, const T val)
32 33 34 35

#define USE_CUDA_ATOMIC(op, T) \
  CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }

36 37 38 39 40
// Default thread count per block(or block size).
// TODO(typhoonzero): need to benchmark against setting this value
//                    to 1024.
constexpr int PADDLE_CUDA_NUM_THREADS = 512;

41 42
// For atomicAdd.
USE_CUDA_ATOMIC(Add, float);
Y
Yu Yang 已提交
43 44
USE_CUDA_ATOMIC(Add, int);
USE_CUDA_ATOMIC(Add, unsigned int);
Y
Yu Yang 已提交
45 46 47
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC(Add, unsigned long long int);  // NOLINT
Y
Yu Yang 已提交
48 49

CUDA_ATOMIC_WRAPPER(Add, int64_t) {
Y
Yu Yang 已提交
50 51
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
Y
Yu Yang 已提交
52
                "long long should be int64");
Y
Yu Yang 已提交
53
  return CudaAtomicAdd(
54 55
      reinterpret_cast<unsigned long long int *>(address),  // NOLINT
      static_cast<unsigned long long int>(val));            // NOLINT
Y
Yu Yang 已提交
56
}
57

58
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600)
59 60 61
USE_CUDA_ATOMIC(Add, double);
#else
CUDA_ATOMIC_WRAPPER(Add, double) {
62 63 64
  unsigned long long int *address_as_ull =                  // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
65 66 67 68 69 70 71 72 73 74 75

  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val + __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN
  } while (assumed != old);

  return __longlong_as_double(old);
}
76 77 78 79 80 81 82 83 84 85 86 87 88
#endif

#ifdef PADDLE_CUDA_FP16
// NOTE(dzhwinter): cuda do not have atomicCAS for half.
// Just use the half address as a unsigned value address and
// do the atomicCAS. According to the value store at high 16 bits
// or low 16 bits, then do a different sum and CAS.
// Given most warp-threads will failed on the atomicCAS, so this
// implemented should be avoided in high concurrency. It's will be
// slower than the way convert value into 32bits and do a full atomicCAS.

// convert the value into float and do the add arithmetic.
// then store the result into a uint32.
D
dzhwinter 已提交
89
inline static __device__ uint32_t add_to_low_half(uint32_t val, float x) {
90 91
  float16 low_half;
  // the float16 in lower 16bits
D
dzhwinter 已提交
92
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
93
  low_half = static_cast<float16>(static_cast<float>(low_half) + x);
D
dzhwinter 已提交
94
  return (val & 0xFFFF0000u) | low_half.x;
95 96
}

D
dzhwinter 已提交
97
inline static __device__ uint32_t add_to_high_half(uint32_t val, float x) {
98 99 100 101
  float16 high_half;
  // the float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(static_cast<float>(high_half) + x);
D
dzhwinter 已提交
102
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118
#if CUDA_VERSION >= 10000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
static __device__ __forceinline__ float16 CUDAFP16ToPDFP16(__half x) {
  return *reinterpret_cast<float16 *>(&x);
}

static __device__ __forceinline__ __half PDFP16ToCUDAFP16(float16 x) {
  return *reinterpret_cast<__half *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, float16) {
  return CUDAFP16ToPDFP16(
      atomicAdd(reinterpret_cast<__half *>(address), PDFP16ToCUDAFP16(val)));
}
#else
119 120 121
CUDA_ATOMIC_WRAPPER(Add, float16) {
  // concrete packed float16 value may exsits in lower or higher 16bits
  // of the 32bits address.
D
dzhwinter 已提交
122 123 124
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
125 126 127 128 129
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
D
dzhwinter 已提交
130
  if (((uintptr_t)address & 0x02) == 0) {
131 132 133 134 135 136
    // the float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
D
dzhwinter 已提交
137
    ret.x = old & 0xFFFFu;
138 139 140 141 142 143 144 145 146 147 148 149
    return ret;
  } else {
    // the float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
D
dangqingqing 已提交
150
#endif
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

// The performance of "atomicAdd(half* )" is bad, but for "atomicAdd(half2* )"
// is good. So for fp16 type, we can use "atomicAdd(half2* )" to speed up.
template <typename T, typename std::enable_if<std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *tensor, size_t index,
                                              const size_t numel, T value) {
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  CudaAtomicAdd(reinterpret_cast<platform::float16 *>(tensor) + index,
                static_cast<platform::float16>(value));
#else
  // whether the address is 32-byte aligned.
  __half *target_addr = reinterpret_cast<__half *>(tensor + index);
  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__half2) == 0);

  if (aligned_half2 && index < (numel - 1)) {
    __half2 value2;
    value2.x = *reinterpret_cast<__half *>(&value);
    value2.y = __int2half_rz(0);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr), value2);

  } else if (!aligned_half2 && index > 0) {
    __half2 value2;
    value2.x = __int2half_rz(0);
    value2.y = *reinterpret_cast<__half *>(&value);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr - 1), value2);

  } else {
    atomicAdd(reinterpret_cast<__half *>(tensor) + index,
              *reinterpret_cast<__half *>(&value));
  }
#endif
}

template <typename T, typename std::enable_if<!std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *arr, size_t index,
                                              const size_t numel, T value) {
  CudaAtomicAdd(arr + index, value);
}

#ifdef PADDLE_WITH_CUDA
/*
 * One thead block deals with elementwise atomicAdd for vector of len.
 * @in: [x1, x2, x3, ...]
 * @out:[y1+x1, y2+x2, y3+x3, ...]
 * */
template <typename T, typename std::enable_if<!std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
}

// Note: assume that len is even. If len is odd, call fastAtomicAdd directly.
template <typename T, typename std::enable_if<std::is_same<
                          platform::float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
214 215 216 217 218 219
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
#else
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  int i = 0;
  int loops = len / 2 * 2;

  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(out) % sizeof(__half2) == 0);

  if (aligned_half2) {
    for (i = tid * 2; i < loops; i += threads_per_block * 2) {
      __half2 value2;
      T value_1 = in[i];
      T value_2 = in[i + 1];
      value2.x = *reinterpret_cast<__half *>(&value_1);
      value2.y = *reinterpret_cast<__half *>(&value_2);
      atomicAdd(reinterpret_cast<__half2 *>(&out[i]), value2);
    }
    for (; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  } else {
    for (int i = tid; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  }
243
#endif
244 245
}
#endif
246
#endif
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
// NOTE(zhangbo): cuda do not have atomicCAS for __nv_bfloat16.
inline static __device__ uint32_t bf16_add_to_low_half(uint32_t val, float x) {
  bfloat16 low_half;
  // the bfloat16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<bfloat16>(static_cast<float>(low_half) + x);
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t bf16_add_to_high_half(uint32_t val, float x) {
  bfloat16 high_half;
  // the bfloat16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<bfloat16>(static_cast<float>(high_half) + x);
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

#if CUDA_VERSION >= 11000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
static __device__ __forceinline__ bfloat16 CUDABF16ToPDBF16(__nv_bfloat16 x) {
  return *reinterpret_cast<bfloat16 *>(&x);
}

static __device__ __forceinline__ __nv_bfloat16 PDBF16ToCUDABF16(bfloat16 x) {
  return *reinterpret_cast<__nv_bfloat16 *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  return CUDABF16ToPDBF16(atomicAdd(reinterpret_cast<__nv_bfloat16 *>(address),
                                    PDBF16ToCUDABF16(val)));
}
#else
CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  // concrete packed bfloat16 value may exsits in lower or higher 16bits
  // of the 32bits address.
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // the bfloat16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed,
                      bf16_add_to_low_half(assumed, val_f));
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // the bfloat16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed,
                      bf16_add_to_high_half(assumed, val_f));
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

314
CUDA_ATOMIC_WRAPPER(Add, complex<float>) {
315 316
  float *real = reinterpret_cast<float *>(address);
  float *imag = real + 1;
317 318
  return complex<float>(CudaAtomicAdd(real, val.real),
                        CudaAtomicAdd(imag, val.imag));
319 320
}

321
CUDA_ATOMIC_WRAPPER(Add, complex<double>) {
322 323
  double *real = reinterpret_cast<double *>(address);
  double *imag = real + 1;
324 325
  return complex<double>(CudaAtomicAdd(real, val.real),
                         CudaAtomicAdd(imag, val.imag));
326 327
}

328 329 330 331 332
// For atomicMax
USE_CUDA_ATOMIC(Max, int);
USE_CUDA_ATOMIC(Max, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
333
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
334
USE_CUDA_ATOMIC(Max, unsigned long long int);  // NOLINT
335
#else
336
CUDA_ATOMIC_WRAPPER(Max, unsigned long long int) {  // NOLINT
337
  if (*address >= val) {
338
    return *address;
339 340
  }

341
  unsigned long long int old = *address, assumed;  // NOLINT
342 343 344 345 346 347 348 349 350 351 352

  do {
    assumed = old;
    if (assumed >= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
353 354 355 356 357

CUDA_ATOMIC_WRAPPER(Max, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
358 359 360 361 362 363 364 365 366 367 368
  long long int res = *address;  // NOLINT
  while (val > res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
369 370 371 372
}

CUDA_ATOMIC_WRAPPER(Max, float) {
  if (*address >= val) {
373
    return *address;
374 375
  }

376
  int *const address_as_i = reinterpret_cast<int *>(address);
377 378 379 380 381 382 383 384 385 386
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
387 388

  return __int_as_float(old);
389 390 391 392
}

CUDA_ATOMIC_WRAPPER(Max, double) {
  if (*address >= val) {
393
    return *address;
394 395
  }

396 397 398
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
399 400 401 402 403 404 405 406 407

  do {
    assumed = old;
    if (__longlong_as_double(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
408 409

  return __longlong_as_double(old);
410 411 412 413 414 415 416
}

// For atomicMin
USE_CUDA_ATOMIC(Min, int);
USE_CUDA_ATOMIC(Min, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
417
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
418
USE_CUDA_ATOMIC(Min, unsigned long long int);  // NOLINT
419
#else
420
CUDA_ATOMIC_WRAPPER(Min, unsigned long long int) {  // NOLINT
421
  if (*address <= val) {
422
    return *address;
423 424
  }

425
  unsigned long long int old = *address, assumed;  // NOLINT
426 427 428 429 430 431 432 433 434 435 436

  do {
    assumed = old;
    if (assumed <= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif
437 438 439 440 441

CUDA_ATOMIC_WRAPPER(Min, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
442 443 444 445 446 447 448 449 450 451 452
  long long int res = *address;  // NOLINT
  while (val < res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
453 454 455 456
}

CUDA_ATOMIC_WRAPPER(Min, float) {
  if (*address <= val) {
457
    return *address;
458 459
  }

460
  int *const address_as_i = reinterpret_cast<int *>(address);
461 462 463 464 465 466 467 468 469 470
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);
471 472

  return __int_as_float(old);
473 474 475 476
}

CUDA_ATOMIC_WRAPPER(Min, double) {
  if (*address <= val) {
477
    return *address;
478 479
  }

480 481 482
  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT
483 484 485 486 487 488 489 490 491

  do {
    assumed = old;
    if (__longlong_as_double(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);
492 493

  return __longlong_as_double(old);
494 495
}

496 497
}  // namespace platform
}  // namespace paddle