layer_helper.py 15.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17
import copy
import itertools

Q
Qiao Longfei 已提交
18
from framework import Variable, Parameter, default_main_program, default_startup_program, \
Y
Yu Yang 已提交
19
    unique_name, dtype_is_floating
20
from paddle.v2.fluid.initializer import Constant, Xavier
G
guosheng 已提交
21
from param_attr import ParamAttr, WeightNormParamAttr
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36

class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
37
    def main_program(self):
38
        return default_main_program()
Y
Yu Yang 已提交
39

Q
QI JUN 已提交
40
    @property
41
    def startup_program(self):
42
        return default_startup_program()
Q
QI JUN 已提交
43

Y
Yu Yang 已提交
44
    def append_op(self, *args, **kwargs):
45
        return self.main_program.current_block().append_op(*args, **kwargs)
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
Y
Yu Yang 已提交
70
        return ParamAttr.to_attr(self.kwargs.get('param_attr', None))
Y
Yu Yang 已提交
71

Q
QI JUN 已提交
72
    @property
Q
QI JUN 已提交
73
    def bias_attr(self):
Y
Yu Yang 已提交
74
        return ParamAttr.to_attr(self.kwargs.get('bias_attr', None))
Y
Yu Yang 已提交
75 76 77

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
Y
Yu Yang 已提交
78
        if isinstance(param_attr, ParamAttr):
Y
Yu Yang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
F
fengjiayi 已提交
101 102
                dtype = each.dtype
            elif dtype != each.dtype:
Q
Qiao Longfei 已提交
103 104
                raise ValueError("Data Type mismatch: %d to %d" %
                                 (dtype, each.dtype))
Y
Yu Yang 已提交
105 106
        return dtype

G
guosheng 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
                    name=unique_name(".".join([self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
                name=unique_name(".".join([self.name, 'weight_norm_abs'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='abs', inputs={'X': x}, outputs={'Out': abs_out})
            pow_out = block.create_var(
                name=unique_name(".".join([self.name, 'weight_norm_pow'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='pow',
                inputs={'X': abs_out},
                outputs={'Out': pow_out},
                attrs={'factor': float(p)})
            sum_out = block.create_var(
                name=unique_name(".".join([self.name, 'weight_norm_sum'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': dim,
                    'keep_dim': keep_dim,
                    'reduce_all': True if dim is None else False
                })
            block.append_op(
                type='pow',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={'factor': 1. / p})
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
                    name=unique_name(".".join(
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='reshape',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'shape': shape})
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
                    name=unique_name(".".join(
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='transpose',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis})
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
                    name=unique_name(".".join([self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
                norm = __norm_op(reshape, dim=1, block=block)
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
                norm = __norm_op(reshape, dim=0, block=block)
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = range(len(x.shape))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
                norm = __norm_op(transpose, dim=0, block=block)
                __transpose_op(norm, perm, out=out, block=block)
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
            norm = __norm_except_dim(
                v, dim=dim, block=self.main_program.current_block())
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
            # of y is a subset of x. Thus, we should reshape y to squeeze to
            # achive it.
            w = elementwise_mul(
                x=v,
                y=scale if dim is None else reshape(
                    x=scale, shape=[v.shape[dim]]),
                axis=-1 if dim is None else dim)
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr.to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr.to_kwargs(with_initializer=True))
        __norm_except_dim(
            x=v_param,
            out=g_param,
            dim=attr.dim,
            block=self.startup_program.global_block())

        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr.to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr.to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

Y
Yu Yang 已提交
278 279 280 281 282 283
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
                         default_initializer=None):
284
        # Deepcopy the attr so that parameters can be shared in program
285
        attr = copy.deepcopy(attr)
Y
Yu Yang 已提交
286 287
        assert isinstance(attr, ParamAttr)
        suffix = 'b' if is_bias else 'w'
G
guosheng 已提交
288 289
        if attr.name is None:
            attr.name = unique_name(".".join([self.name, suffix]))
Y
Yu Yang 已提交
290

G
guosheng 已提交
291
        if default_initializer is None and attr.initializer is None:
Y
Yu Yang 已提交
292 293 294 295
            if is_bias:
                attr.set_default_bias_initializer()
            else:
                attr.set_default_param_initializer()
296
        else:
Y
Yu Yang 已提交
297
            attr.set_default_initializer(default_initializer)
G
guosheng 已提交
298 299 300 301 302 303 304

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
Y
Yu Yang 已提交
305

306
        self.startup_program.global_block().create_parameter(
Y
Yu Yang 已提交
307
            dtype=dtype, shape=shape, **attr.to_kwargs(with_initializer=True))
308
        return self.main_program.global_block().create_parameter(
Y
Yu Yang 已提交
309
            dtype=dtype, shape=shape, **attr.to_kwargs())
Y
Yu Yang 已提交
310

Q
Qiao Longfei 已提交
311 312 313 314 315 316
    def get_parameter(self, name):
        param = self.main_program.global_block().var(name)
        if not isinstance(param, Parameter):
            raise ValueError("no Parameter name %s found" % name)
        return param

Q
QI JUN 已提交
317
    def create_tmp_variable(self, dtype, stop_gradient=False):
318
        return self.main_program.current_block().create_var(
Q
QI JUN 已提交
319 320
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
Q
QI JUN 已提交
321 322
            persistable=False,
            stop_gradient=stop_gradient)
Y
Yu Yang 已提交
323

Y
Yu Yang 已提交
324
    def create_variable(self, *args, **kwargs):
325
        return self.main_program.current_block().create_var(*args, **kwargs)
Y
Yu Yang 已提交
326

Q
Qiao Longfei 已提交
327
    def create_global_variable(self, persistable=False, *args, **kwargs):
328
        return self.main_program.global_block().create_var(
Q
Qiao Longfei 已提交
329 330 331 332
            *args, persistable=persistable, **kwargs)

    def set_variable_initializer(self, var, initializer):
        assert isinstance(var, Variable)
333
        self.startup_program.global_block().create_var(
Q
Qiao Longfei 已提交
334 335
            name=var.name,
            type=var.type,
F
fengjiayi 已提交
336
            dtype=var.dtype,
Q
Qiao Longfei 已提交
337 338 339
            shape=var.shape,
            persistable=True,
            initializer=initializer)
Y
Yu Yang 已提交
340

Y
Yu Yang 已提交
341
    def append_bias_op(self, input_var, dim_start=1, dim_end=None):
342
        """
X
xuwei06 已提交
343
        Append bias operator and return its output. If the user does not set
344
        bias_attr, append_bias_op will return input_var
X
xuwei06 已提交
345

346 347 348 349
        :param input_var: the input variable. The len(input_var.shape) is
        larger or equal than 2.
        :bias_initializer: an instance of a subclass of Initializer used to
        initialize the bias
X
xuwei06 已提交
350 351
        :param dim_start:
        :param dim_end: the shape of the bias will be
X
xuwei06 已提交
352
        input_var.shape[dim_start:dim_end]. The bias is broadcasted to other
X
xuwei06 已提交
353
        dimensions and added to input_var to get the output
354
        """
X
xuwei06 已提交
355
        size = list(input_var.shape[dim_start:dim_end])
Q
QI JUN 已提交
356
        bias_attr = self.bias_attr
Y
Yu Yang 已提交
357 358
        if not bias_attr:
            return input_var
359

Y
Yu Yang 已提交
360
        b = self.create_parameter(
Y
Yu Yang 已提交
361
            attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
F
fengjiayi 已提交
362
        tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
363 364 365 366
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
X
xuwei06 已提交
367 368
            outputs={'Out': [tmp]},
            attrs={'axis': dim_start})
Y
Yu Yang 已提交
369 370 371 372 373 374 375 376
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
F
fengjiayi 已提交
377
        tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
378 379 380 381
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
F
fengjiayi 已提交
382
            outputs={"Out": [tmp]},
Y
Yu Yang 已提交
383 384
            attrs=act)
        return tmp
385 386 387

    def _get_default_initializer(self, dtype):
        if dtype is None or dtype_is_floating(dtype) is True:
388
            return Xavier()
389 390
        else:
            # For integer and boolean types, initialize with all zeros
391
            return Constant()
Y
Yang Yu 已提交
392 393 394 395 396 397

    def is_instance(self, param_name, cls):
        param = self.kwargs.get(param_name, None)
        if not isinstance(param, cls):
            raise TypeError("The input {0} parameter of method {1} must be {2}",
                            param_name, self.layer_type, cls.__name__)