manipulation.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/pten/kernels/cpu/manipulation.h"
16
#include "paddle/pten/api/ext/dispatch.h"
C
Chen Weihang 已提交
17
#include "paddle/pten/infermeta/unary.h"
18
#include "paddle/pten/kernels/cpu/utils.h"
C
Chen Weihang 已提交
19 20
#include "paddle/pten/kernels/hybird/general/manipulation.h"
#include "paddle/pten/kernels/hybird/math/cast_func.h"
21 22 23 24 25 26 27 28 29

namespace pten {

template <typename T>
void Flatten(const CPUContext& dev_ctx,
             const DenseTensor& x,
             int start_axis,
             int stop_axis,
             DenseTensor* out) {
30
  auto out_dims = out->dims();
31
  pten::Copy(dev_ctx, x, false, out);
32
  out->Resize(out_dims);
33 34 35 36 37 38 39 40 41 42 43 44 45
}

// TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate
// Output Tensor,
// is there a more flexible way to deal with this case?
template <typename T>
void FlattenWithXShape(const CPUContext& dev_ctx,
                       const DenseTensor& x,
                       int start_axis,
                       int stop_axis,
                       DenseTensor* out,
                       DenseTensor* xshape) {
  Flatten<T>(dev_ctx, x, start_axis, stop_axis, out);
46 47 48
  general::SetXShape(x, xshape);
}

49 50 51 52 53
void Reshape(const CPUContext& dev_ctx,
             const DenseTensor& x,
             const ScalarArray& shape,
             DenseTensor* out) {
  auto out_meta = InferMetaFromVecValue(x.meta(), shape.GetData());
54
  if (x.data() == out->data() && x.numel() == out->numel()) {
55 56 57 58 59 60
    out->Resize(out_meta.dims);
    return;
  }
  pten::Copy(dev_ctx, x, false, out);
  out->Resize(out_meta.dims);
  out->ResetLoD(x.lod());
61 62
}

63 64 65 66 67
void ReshapeWithXShape(const CPUContext& dev_ctx,
                       const DenseTensor& x,
                       const ScalarArray& shape,
                       DenseTensor* xshape,
                       DenseTensor* out) {
68
  general::SetXShape(x, xshape);
69
  Reshape(dev_ctx, x, shape, out);
70 71 72 73 74 75 76 77 78 79 80 81
}

template <typename T>
void Cast(const CPUContext& dev_ctx,
          const DenseTensor& x,
          DataType out_dtype,
          DataType in_dtype,
          DenseTensor* out) {
  PD_VISIT_ALL_TYPES(out_dtype, "CastKernelImpl", ([&] {
                       math::CastKernelImpl<CPUContext, T, data_t>(
                           dev_ctx, x, out);
                     }));
82 83 84 85
}

}  // namespace pten

86
PT_REGISTER_KERNEL(flatten,
87 88 89 90 91 92 93 94 95
                   CPU,
                   ANY,
                   pten::Flatten,
                   float,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}
96
PT_REGISTER_KERNEL(flatten_with_xshape,
97 98 99 100 101 102 103 104 105
                   CPU,
                   ANY,
                   pten::FlattenWithXShape,
                   float,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}
106 107

PT_REGISTER_KERNEL(cast,
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                   CPU,
                   ANY,
                   pten::Cast,
                   float,
                   double,
                   int,
                   int64_t,
                   int16_t,
                   bool,
                   uint8_t,
                   paddle::platform::float16,
                   paddle::platform::bfloat16,
                   paddle::platform::complex<float>,
                   paddle::platform::complex<double>) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
124

125 126
PT_REGISTER_KERNEL_ALL_DTYPE(reshape, CPU, ANY, pten::Reshape) {}
PT_REGISTER_KERNEL_ALL_DTYPE(reshape_with_xshape,
127 128
                             CPU,
                             ANY,
129
                             pten::ReshapeWithXShape) {}