flatten_op.cc 20.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#include "paddle/fluid/operators/flatten_op.h"
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
19 20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

27
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
28
 public:
29 30 31
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
34 35
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
36
    PADDLE_ENFORCE_GE(axis, 0,
37 38
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
39 40
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
41 42
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    const auto &out_dims = GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
58 59 60 61 62
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
63
      } else {
D
danleifeng 已提交
64 65 66 67 68
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
69 70 71 72 73 74 75 76
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

77 78 79
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
80 81 82
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
104 105 106 107 108 109 110 111
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
B
Bai Yifan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

137
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
138
 public:
139 140 141
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
142 143 144 145 146
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

147 148 149
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
150 151 152
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
153 154 155 156 157 158 159 160
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

161
  void Apply(GradOpPtr<T> grad_op) const override {
162 163 164 165 166
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
167 168 169
  }
};

170 171 172 173 174
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
175
class Flatten2Op : public framework::OperatorWithKernel {
176
 public:
177 178 179
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
180 181
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
182
    const auto &axis = ctx->Attrs().Get<int>("axis");
183
    const auto &in_dims = ctx->GetInputDim("X");
184
    PADDLE_ENFORCE_GE(axis, 0,
185 186
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
187 188
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
189 190
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
191 192 193 194 195 196 197 198

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
199 200
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
201 202 203 204 205 206 207 208
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }
209 210 211 212 213 214 215

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
216 217 218 219 220 221 222 223 224
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
225 226
        .AsIntermediate()
        .AsExtra();
227 228 229
  }
};

H
hong 已提交
230 231
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
232
 public:
H
hong 已提交
233
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
234

235
  void Apply(GradOpPtr<T> grad_op) const override {
236
    grad_op->SetType("flatten2_grad");
H
hong 已提交
237 238 239 240
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
241 242 243
  }
};

244
class Flatten2GradOp : public framework::OperatorWithKernel {
245
 public:
246 247 248
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
249 250 251 252
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Flatten2Grad");
253 254 255 256 257 258
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

259 260 261
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
262 263 264
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
265 266 267
  }
};

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FlattenContiguousRange");
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");
    const auto &in_dims = ctx->GetInputDim("X");
    int in_dims_size = in_dims.size();
    int real_start_axis = start_axis, real_stop_axis = stop_axis;
    if (start_axis < 0) {
      real_start_axis = start_axis + in_dims_size;
    }
    if (stop_axis < 0) {
      real_stop_axis = stop_axis + in_dims_size;
    }
    PADDLE_ENFORCE_GE(
        real_stop_axis, real_start_axis,
        platform::errors::InvalidArgument("The stop_axis should be greater"
                                          "than or equal to start_axis."));

    const auto &out_dims =
        GetOutputShape(real_start_axis, real_stop_axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
300 301
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }

  static std::vector<int32_t> GetOutputShape(const int start_axis,
                                             const int stop_axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1;
    std::vector<int32_t> out_shape;
    int in_dims_size = in_dims.size();
    out_shape.reserve(in_dims_size - stop_axis + start_axis);

    for (int i = 0; i < start_axis; ++i) {
      out_shape.push_back(in_dims[i]);
    }
    for (int i = start_axis; i <= stop_axis; i++) {
D
danleifeng 已提交
323 324 325 326 327
      if (in_dims[i] == -1 || outer == -1) {
        outer = -1;
      } else {
        outer *= in_dims[i];
      }
328 329 330 331 332 333 334 335
    }
    out_shape.push_back(outer);
    for (int i = stop_axis + 1; i < in_dims_size; i++) {
      out_shape.push_back(in_dims[i]);
    }

    return out_shape;
  }
336 337 338 339

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (ctx.HasOutput("XShape")) {
340 341 342
      return framework::KernelSignature("flatten_with_xshape", {"X"},
                                        {"start_axis", "stop_axis"},
                                        {"Out", "XShape"});
343
    } else {
Y
YuanRisheng 已提交
344
      return framework::KernelSignature("flatten", {"X"},
345 346 347
                                        {"start_axis", "stop_axis"}, {"Out"});
    }
  }
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
392 393
        .AsIntermediate()
        .AsExtra();
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "FlattenContiguousRangeGrad");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
435 436
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
437 438
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
439
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
440

B
Bai Yifan 已提交
441 442 443 444
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
445 446 447
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
448
                  ops::FlattenOpInplaceInferer);
449
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp,
450 451
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
452 453

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
H
hong 已提交
454 455
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
456
                  ops::FlattenOpInplaceInferer);
457
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
458
                  ops::FlattenGradInplaceInferer);
459

460 461 462 463 464 465 466 467 468 469
REGISTER_OPERATOR(
    flatten_contiguous_range, ops::FlattenContiguousRangeOp,
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

470 471 472
REGISTER_OP_CPU_KERNEL(
    flatten, ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
473
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, uint8_t>,
474 475 476 477 478 479 480
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
481
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
482 483 484 485 486 487
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2, ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
488
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
489 490 491 492 493 494 495
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
496
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
497 498 499
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);
500 501 502 503 504 505
REGISTER_OP_CPU_KERNEL(
    flatten_contiguous_range,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      double>,
506 507
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      uint8_t>,
508 509 510 511 512 513 514 515 516 517 518
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      int8_t>,
    ops::FlattenContiguousRangeKernel<paddle::platform::CPUDeviceContext,
                                      int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_contiguous_range_grad,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          float>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          double>,
519 520
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          uint8_t>,
521 522 523 524 525 526
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int8_t>,
    ops::FlattenContiguousRangeGradKernel<paddle::platform::CPUDeviceContext,
                                          int64_t>);