batch_norm_op.cc 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::InvalidArgument(
                        "Input(X) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Scale"), true,
                    platform::errors::InvalidArgument(
                        "Input(Scale) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Bias"), true,
                    platform::errors::InvalidArgument(
                        "Input(Bias) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Mean"), true,
                    platform::errors::InvalidArgument(
                        "Input(Mean) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Variance"), true,
                    platform::errors::InvalidArgument(
                        "Input(Variance) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
                    platform::errors::InvalidArgument(
                        "Output(Y) of BatchNormOp should not be null."));
Q
qingqing01 已提交
46 47
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("MeanOut"), true,
        platform::errors::InvalidArgument(
            "Output(MeanOut) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("VarianceOut"), true,
        platform::errors::InvalidArgument(
            "Output(VarianceOut) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("SavedMean"), true,
        platform::errors::InvalidArgument(
            "Output(SavedMean) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("SavedVariance"), true,
        platform::errors::InvalidArgument(
            "Output(SavedVariance) of BatchNormOp should not be null."));
Q
Qiao Longfei 已提交
64
  }
K
Kexin Zhao 已提交
65

Q
qingqing01 已提交
66 67 68 69 70 71 72 73 74 75
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                    "Mean and MeanOut should share the same memory");
  PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
                    "Variance and VarianceOut should share the same memory");

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

76 77 78 79 80 81 82
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
                          "Input(MomentumTensor) size must be 1"));
  }

83 84 85 86 87 88 89 90 91 92 93 94
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
      "ShapeError: the dimension of input X must greater than or equal to 2."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
      "ShapeError: the dimension of input X must smaller than or equal to 5."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
Q
qingqing01 已提交
95 96 97 98 99

  const int64_t C =
      (data_layout == DataLayout::kNCHW ? x_dims[1]
                                        : x_dims[x_dims.size() - 1]);

100 101
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
102

103 104 105 106 107 108 109 110 111 112
  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL,
                    "ShapeError: the dimension of scale must equal to 1."
                    "But received: the shape of scale is [%s], the dimension "
                    "of scale is [%d]",
                    scale_dim, scale_dim.size());
  PADDLE_ENFORCE_EQ(
      bias_dim.size(), 1UL,
      "ShapeError: the dimension of bias must equal to 1."
      "But received: the shape of bias is [%s],the dimension of bias is [%d]",
      bias_dim, bias_dim.size());
C
ceci3 已提交
113

114 115 116 117 118 119 120
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
121 122 123 124 125 126 127 128
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
                      "ShapeError: the shape of scale must equal to [%d]"
                      "But received: the shape of scale is [%d]",
                      C, scale_dim[0]);
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
                      "ShapeError: the shape of bias must equal to [%d]"
                      "But received: the shape of bias is [%d]",
                      C, bias_dim[0]);
129
  }
Q
qingqing01 已提交
130 131 132 133 134 135 136 137 138 139
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
140
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                    "Mean input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                    "Variance input should be of float type");

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
160
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
161 162 163 164
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
165
  }
Q
qingqing01 已提交
166
#endif
Q
Qiao Longfei 已提交
167

Q
qingqing01 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                       "'epsilon' should be between 0.0 and 0.001.");
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
198 199 200 201 202
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
218 219 220 221
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
      .AsDispensable();
Q
qingqing01 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
  AddComment(R"DOC(
237
Batch Normalization.
Q
Qiao Longfei 已提交
238

239 240 241 242 243 244
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
245 246

)DOC");
Q
qingqing01 已提交
247
}
C
chengduo 已提交
248

Q
Qiao Longfei 已提交
249
template <typename T>
Q
QI JUN 已提交
250 251
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
252 253 254
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
255
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
256
    const bool is_test = ctx.Attr<bool>("is_test");
257 258 259 260
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
261 262 263
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
264 265 266

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
267 268
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
269 270
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
271 272
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

288
    if (!global_stats) {
Q
Qiao Longfei 已提交
289 290 291 292 293 294 295 296
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

297 298 299 300 301 302
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
303 304
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
305
        framework::TensorCopy(*x, ctx.GetPlace(), y);
306 307 308
        return;
      }

Q
QI JUN 已提交
309 310
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
311 312 313 314 315 316 317 318 319 320 321 322
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
323
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
337
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
338 339
      }

340 341 342 343 344 345 346
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
347 348 349 350 351 352 353 354
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
355
    if (global_stats) {
Q
Qiao Longfei 已提交
356 357 358 359 360 361 362 363 364 365 366
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
367 368
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
382 383
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
384 385 386 387 388 389 390 391
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
392
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
393 394 395 396 397 398 399 400 401
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
402
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
403 404 405 406
    }
  }
};

Q
qingqing01 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
  PADDLE_ENFORCE(ctx->HasInput("X"));
  PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                 "Input(Y@GRAD) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                 "Input(SavedMean) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                 "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                   "null at same time");
  }
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                   "Using global stats during training is not supported "
                   "in gradient op kernel of batch_norm_mkldnn_op now.");
  }
Q
Qiao Longfei 已提交
431

Q
qingqing01 已提交
432 433 434 435 436
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C = (data_layout == DataLayout::kNCHW ? x_dims[1]
                                                  : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
437

Q
qingqing01 已提交
438 439 440 441
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
442
  }
Q
qingqing01 已提交
443
}
Q
Qiao Longfei 已提交
444

Q
qingqing01 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
460

Q
qingqing01 已提交
461 462 463
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
464

465
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
466 467 468 469 470
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
471
#endif
472

473 474 475
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
Q
qingqing01 已提交
476
}
Q
Qiao Longfei 已提交
477 478

template <typename T>
Q
QI JUN 已提交
479
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
480 481 482 483 484 485 486 487 488
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
489
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
490 491
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
492 493
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
494 495 496 497

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
498 499
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
500 501
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
502 503
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
504 505 506 507 508 509 510 511
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
512 513 514 515 516 517 518 519

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
520
      inv_var_tensor.Resize({C});
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
541 542 543 544 545

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
546 547
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
548

549 550 551 552
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
553

554 555
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
556 557 558
      return;
    }

559 560
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
561

L
lvmengsi 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

Q
QI JUN 已提交
577 578
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
579 580 581 582 583 584
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

L
lvmengsi 已提交
585 586 587 588 589 590 591 592
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

593
        if (d_scale && d_bias) {
L
lvmengsi 已提交
594 595
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
596
        }
L
lvmengsi 已提交
597

598 599 600 601 602
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
603 604 605
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
606 607 608 609 610 611
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
612 613 614
        }
        break;
      }
Q
QI JUN 已提交
615
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
616 617 618 619 620 621
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

L
lvmengsi 已提交
622 623 624 625 626
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
627 628

        if (d_scale && d_bias) {
L
lvmengsi 已提交
629 630
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
631 632 633 634 635 636
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
L
lvmengsi 已提交
637 638 639
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
640 641 642 643 644
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
645 646 647 648
        }
        break;
      }
      default:
Q
QI JUN 已提交
649
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
650 651 652 653
    }
  }
};

H
hong 已提交
654
template <typename T>
655 656 657 658 659 660 661 662 663 664
std::unique_ptr<T> BatchNormGradMaker<T>::Apply() const {
  auto *op = new T();
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
665 666 667
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
668 669 670 671 672 673

  // used when setting use_global_stats True during training
  if (boost::get<bool>(this->GetAttr("use_global_stats"))) {
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
674

675
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
676

677 678 679
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
Y
Yu Yang 已提交
680

681 682
  return std::unique_ptr<T>(op);
}
Y
Yu Yang 已提交
683

Q
Qiao Longfei 已提交
684 685 686 687
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
688
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
689 690 691
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
692
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
693

Q
QI JUN 已提交
694
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
695 696
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
697 698
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
699 700
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);