im2col.cc 10.3 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "paddle/operators/math/im2col.h"
H
hedaoyuan 已提交
16 17

namespace paddle {
18
namespace operators {
19
namespace math {
H
hedaoyuan 已提交
20 21

/*
H
hedaoyuan 已提交
22 23 24
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
25 26
 */
template <class T>
H
hedaoyuan 已提交
27 28
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
29
 public:
H
hedaoyuan 已提交
30 31
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
32
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);

    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) < 0 ||
              (im_row_idx - padding_height) >= input_height ||
              (im_col_idx - padding_width) < 0 ||
              (im_col_idx - padding_width) >= input_width) {
            col_data[(c * output_height + h) * output_width + w] = T(0);
H
hedaoyuan 已提交
61
          } else {
H
hedaoyuan 已提交
62 63 64 65
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            col_data[(c * output_height + h) * output_width + w] =
                im_data[im_row_idx * input_width + im_col_idx];
H
hedaoyuan 已提交
66 67 68 69 70 71 72 73
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
74 75 76
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
77 78
 */
template <class T>
H
hedaoyuan 已提交
79 80
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
81
 public:
H
hedaoyuan 已提交
82 83
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
84
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) >= 0 &&
              (im_row_idx - padding_height) < input_height &&
              (im_col_idx - padding_width) >= 0 &&
              (im_col_idx - padding_width) < input_width) {
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            im_data[im_row_idx * input_width + im_col_idx] +=
                col_data[(c * output_height + h) * output_width + w];
H
hedaoyuan 已提交
115 116 117 118 119 120 121
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
122 123 124 125 126 127 128 129
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, float>;
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, double>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, float>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
                             platform::CPUPlace, double>;
H
hedaoyuan 已提交
130 131

/*
H
hedaoyuan 已提交
132 133 134
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
135 136
 */
template <class T>
H
hedaoyuan 已提交
137 138
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
139
 public:
H
hedaoyuan 已提交
140 141
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
142
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset < 0 || im_row_offset >= input_height ||
                  im_col_offset < 0 || im_col_offset >= input_width) {
                col_data[col_offset] = T(0);
H
hedaoyuan 已提交
177
              } else {
H
hedaoyuan 已提交
178 179 180 181
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                col_data[col_offset] = im_data[im_offset];
H
hedaoyuan 已提交
182 183 184 185 186 187 188 189 190 191
              }
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
192 193 194
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
195 196
 */
template <class T>
H
hedaoyuan 已提交
197 198
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                    platform::CPUPlace, T> {
H
hedaoyuan 已提交
199
 public:
H
hedaoyuan 已提交
200 201
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
202
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset >= 0 && im_row_offset < input_height &&
                  im_col_offset >= 0 && im_col_offset < input_width) {
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
240 241 242 243 244 245 246 247 248
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
249 250 251 252 253 254 255 256
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, float>;
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, double>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, float>;
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
                             platform::CPUPlace, double>;
H
hedaoyuan 已提交
257

258
}  // namespace math
259
}  // namespace operators
H
hedaoyuan 已提交
260
}  // namespace paddle