test_imperative_double_grad.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid.wrapped_decorator import wrap_decorator
import unittest
from unittest import TestCase
import numpy as np
from paddle.fluid.dygraph.base import grad


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
        if fluid.in_dygraph_mode():
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


class TestDygraphDoubleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_set=None,
             create_graph=False):
        backward_strategy = fluid.dygraph.BackwardStrategy()
        backward_strategy.sort_sum_gradient = self.sort_sum_gradient
        return grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_set=no_grad_set,
            create_graph=create_graph,
            backward_strategy=backward_strategy)

    @dygraph_guard
    def test_exception(self):
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_set=[1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_set=1)

    @dygraph_guard
    def test_simple_example(self):
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
            dx, = self.grad([x], [x], create_graph=create_graph)
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

            dx_mul_2, = self.grad([y, x], [x], create_graph=create_graph)
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

            none_grad, = self.grad([x], [y], create_graph=create_graph)
            self.assertTrue(none_grad is None)

            grad_with_none_and_not_none, = self.grad(
                [x, y], [y], create_graph=create_graph)
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

    @dygraph_guard
    def test_none_one_initial_gradient(self):
        x = random_var(self.shape)
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        y = y * y
        z = y * y

        x_np = x.numpy()
        relu_x_np = np.maximum(x_np, 0).astype('float32')
        relu_x_grad_np = (x_np > 0).astype('float32')
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

        random_grad_y = random_var(y.shape)
        random_grad_z = random_var(z.shape)
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
                    dx_actual, = self.grad(
                        outputs=[y, z],
                        inputs=[x],
                        grad_outputs=[grad_y, grad_z],
                        create_graph=create_graph)

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

    @dygraph_guard
    def test_example_with_gradient_accumulation_and_create_graph(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    @dygraph_guard
    def test_example_with_gradient_accumulation_and_no_grad_set(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
            [w_mean], [x], create_graph=True, no_grad_set=[y2])

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    @dygraph_guard
    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()

        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


if __name__ == '__main__':
    unittest.main()