DataProvider.h 12.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#pragma once

#include <vector>
#include <memory>
#include <mutex>
#include <iostream>
#include <fstream>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#include "paddle/utils/Logging.h"
#include "paddle/utils/Queue.h"
#include "paddle/utils/Locks.h"
#include "paddle/utils/ThreadLocal.h"
#include "paddle/utils/TypeDefs.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Util.h"
#include "paddle/math/Vector.h"
#include "DataConfig.pb.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/parameter/Argument.h"

namespace paddle {

/**
Q
qijun 已提交
44 45
 * @def REGISTER_DATA_PROVIDER
 * @brief Macro for registering a data provider
Z
zhangjinchao01 已提交
46 47 48 49 50 51 52 53 54 55
 */
#define REGISTER_DATA_PROVIDER(__type_name, __class_name)               \
  static InitFunction __reg_type_##__type_name([]() {                   \
    DataProvider::registrar_.registerClass<__class_name>(#__type_name); \
  })

class DataBatch;
class BufferBatch;
typedef std::shared_ptr<DataBatch> DataBatchPtr;
typedef std::shared_ptr<BufferBatch> BufferBatchPtr;
Q
qijun 已提交
56 57 58
/**
 * @brief Data for batch training a neural network
 */
Z
zhangjinchao01 已提交
59 60 61
class DataBatch {
public:
  DataBatch() : size_(0) { data_.clear(); }
Q
qijun 已提交
62 63 64 65
  /**
   * @brief Get batch size
   * @return batch size
   */
Z
zhangjinchao01 已提交
66
  int64_t getSize() const { return size_; }
Q
qijun 已提交
67 68 69 70
  /**
   * @brief Get num of sequences of sequence data
   * @return num of sequences
   */
Z
zhangjinchao01 已提交
71 72 73 74 75 76
  int64_t getNumSequences() const {
    if (data_.empty()) return size_;
    return data_[0].sequenceStartPositions
               ? data_[0].sequenceStartPositions->getSize() - 1
               : size_;
  }
Q
qijun 已提交
77 78 79 80
  /**
   * @brief Set batch size
   * @param[in] size size
   */
Z
zhangjinchao01 已提交
81
  void setSize(int64_t size) { size_ = size; }
Q
qijun 已提交
82 83 84 85 86 87
  /**
   * @brief Get size of argument vector
   * @return size of argument vector
   * @note For usual supervised learning, input data and label is needed,
   * then there will be two argument.
   */
Z
zhangjinchao01 已提交
88 89
  int64_t getNumStreams() const { return data_.size(); }

Q
qijun 已提交
90 91 92 93 94
  /**
   * @brief Get a argument with index i
   * @param[in] i index in argument vector
   * @return a argument with index i
   */
Z
zhangjinchao01 已提交
95
  const Argument& getStream(int i) const { return data_[i]; }
Q
qijun 已提交
96 97 98 99
  /**
   * @brief Get all argument
   * @return an argument vector
   */
Z
zhangjinchao01 已提交
100
  std::vector<Argument>& getStreams() { return data_; }
Q
qijun 已提交
101 102 103 104
  /**
   * @brief Get all argument const
   * @return an argument vector
   */
Z
zhangjinchao01 已提交
105
  std::vector<Argument> getStreams() const { return data_; }
Q
qijun 已提交
106 107 108
  /**
   * @brief Clear DataBatch
   */
Z
zhangjinchao01 已提交
109 110 111 112 113 114
  void clear() {
    data_.clear();
    size_ = 0;
  }

  /**
Q
qijun 已提交
115 116 117
   * @brief Append data to DataBatch
   * @param[in] data  matrix data
   * @note The order in which each data stream is appended must match the order
Z
zhangjinchao01 已提交
118 119 120 121 122 123 124 125 126 127
   * specified in stream_names of DataConfig. The stream_names can be obtained
   * using DataProvider::getStreamNames().
   */
  void appendData(MatrixPtr data) {
    Argument argu;
    argu.value = data;
    data_.push_back(argu);
  }

  /**
Q
qijun 已提交
128 129 130 131
   * @brief Append sequence data to DataBatch
   * @param[in] data                      matrix data
   * @param[in] sequenceStartPositions    sequence data
   * @note The order in which each data stream is appended must match the order
Z
zhangjinchao01 已提交
132 133 134 135 136 137 138 139 140 141
   * specified in stream_names of DataConfig. The stream_names can be obtained
   * using DataProvider::getStreamNames().
   */
  void appendData(const MatrixPtr& data,
                  const ICpuGpuVectorPtr& sequenceStartPositions) {
    Argument argu;
    argu.value = data;
    argu.sequenceStartPositions = sequenceStartPositions;
    data_.push_back(argu);
  }
Q
qijun 已提交
142 143 144 145 146
  /**
   * @brief Append label data
   * @param[in]  label    label data
   * @param[in]  value    matrix data, default null
   */
Z
zhangjinchao01 已提交
147 148 149 150 151 152
  void appendLabel(IVectorPtr label, MatrixPtr value = nullptr) {
    Argument argu;
    argu.ids = label;
    argu.value = value;
    data_.push_back(argu);
  }
Q
qijun 已提交
153 154 155 156
  /**
   * @brief Append user defined data
   * @param[in]  ptr     user defined data
   */
Z
zhangjinchao01 已提交
157 158 159 160 161 162
  void appendUserDefinedPtr(UserDefinedVectorPtr ptr) {
    Argument argu;
    argu.udp = ptr;
    data_.push_back(argu);
  }

Q
qijun 已提交
163 164 165 166 167
  /*
   * @brief Append argument
   * @param[in]  argus   DataBatch.getStreams()
   * @param[in]  size    DataBatch.getSize()
   * @param[in]  dataId  sub dataprovider id (in MultiDataProvider)
Z
zhangjinchao01 已提交
168 169 170 171 172 173 174 175 176 177 178
   */
  void appendArguments(const std::vector<Argument>& argus, int size,
                       int dataId) {
    size_ += size;
    for (const auto& argu : argus) {
      data_.push_back(argu);
      data_.back().dataId = dataId;
    }
  }

protected:
Q
qijun 已提交
179 180 181
  /**
   * @brief batch size
   */
Z
zhangjinchao01 已提交
182
  int64_t size_;
Q
qijun 已提交
183 184 185 186
  /**
   * @brief A batch data consist of a Argument vector,
   * An argument corresponds to a type of input data.
   */
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  std::vector<Argument> data_;
};

class BufferBatch {
public:
  BufferBatch() {
    hlStream_ = HPPL_STREAM_DEFAULT;
    hlEvent_ = NULL;
    batchData_ = NULL;
  }
  ~BufferBatch() {
    if (hlEvent_) {
      hl_destroy_event(hlEvent_);
      hlEvent_ = NULL;
    }
    if (batchData_) {
      delete batchData_;
      batchData_ = NULL;
    }
  }

  void setDataBatch(DataBatch* batchData) { batchData_ = batchData; }
  DataBatch* getDataBatch() { return batchData_; }

  void setCuStream(hl_stream_t stream) { hlStream_ = stream; }
  hl_stream_t getCuStream() const { return hlStream_; }

  void setCuEvent(hl_event_t event) { hlEvent_ = event; }

  hl_event_t getCuEvent() const { return hlEvent_; }

  void createCuEvent() {
    if (!hlEvent_) {
      hlStream_ = HPPL_STREAM_1;
      hl_create_event(&hlEvent_);
    }
  }

  void syncEvent() {
    if (hlEvent_) {
      hl_stream_wait_event(hlStream_, hlEvent_);
    }
  }

  void swap(BufferBatch* bufBatch);
  void clone(DataBatch* srcBatch, bool useGpu);

protected:
  DataBatch* batchData_;
  hl_stream_t hlStream_;
  hl_event_t hlEvent_;
};

class DataProvider;
typedef std::shared_ptr<DataProvider> DataProviderPtr;

typedef Queue<BufferBatch*> BufferBatchQueue;

class DoubleBuffer {
public:
  DoubleBuffer(DataProvider* dataPool, bool useGpu, int64_t batchSize = 0);
  virtual ~DoubleBuffer();
  void removeOneBatch(DataBatch* dataBatch);

  void setBatchSize(int64_t newBatchSize) { batchSize_ = newBatchSize; }

  int64_t getBatchSize() { return batchSize_; }

  void startAsyncLoad();
  void finishAsyncLoad() {
    stopping_ = true;
    taskReadySem_.post();
    asyncLoader_->join();
  }

  void setPending(bool pending) { pending_ = pending; }

protected:
  virtual void asyncLoadBatch();
  void insertOneBatch(DataBatch* batch);

  DataProvider* dataPool_;
  bool useGpu_;
  int32_t batchSize_;
  ThreadLocal<BufferBatchPtr> usingBatch_;
  BufferBatchQueue* dataQueue_;
  BufferBatchQueue* bufferQueue_;
  std::unique_ptr<std::thread> asyncLoader_;
  Semaphore taskReadySem_;
  bool stopping_;
  bool pending_;
};

/**
Q
qijun 已提交
281 282
 * @brief Base class for DataProvider, which supplies data for training
 * @note It can supplies multiple streams of data.
Z
zhangjinchao01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
 * For typical supervised training, there are two streams:
 * one is for input, one is for label.
 */
class DataProvider {
public:
  static ClassRegistrar<DataProvider, DataConfig, bool> registrar_;
  static DataProvider* create(const DataConfig& config,
                              bool useGpu = FLAGS_use_gpu);

  DataProvider(const DataConfig& config, bool useGpu)
      : config_(config),
        skipShuffle_(false),
        usageRatio_(config.usage_ratio()),
        useGpu_(useGpu) {
    if (config_.async_load_data()) {
      initAsyncLoader();
    }
  }
  virtual ~DataProvider() {}

  const DataConfig& getConfig() const { return config_; }

  void setSkipShuffle() { skipShuffle_ = true; }
Q
qijun 已提交
306 307 308 309 310 311 312

  /**
   * @brief Get next batch of training samples
   * @param[in]    size    size of training samples to get
   * @param[out]   batch   a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
313 314 315
  int64_t getNextBatch(int64_t size, DataBatch* batch);

  /**
Q
qijun 已提交
316
   * @brief Shuffle the data set
Z
zhangjinchao01 已提交
317 318 319 320
   */
  virtual void shuffle() = 0;

  /**
Q
qijun 已提交
321 322
   * @brief reset all the value of index
   * @note reset() must be called before any calls to getNextBatch()
Z
zhangjinchao01 已提交
323 324 325 326 327 328 329 330 331 332 333
   * IMPORTANT: subclass reset() should always call the base class reset()
   * at the end of the function
   */
  virtual void reset() {
    if (doubleBuffer_ != nullptr) {
      LOG(INFO) << "the double-buffer is starting ...";
      doubleBuffer_->startAsyncLoad();
    }
  }

  /**
Q
qijun 已提交
334 335 336
   * @brief Get the size of training samples
   * @return the number of training samples in the data set.
   * @note return -1 to indicate unlimited number of samples.
Z
zhangjinchao01 已提交
337 338
   */
  virtual int64_t getSize() = 0;
Q
qijun 已提交
339 340 341 342 343 344
  /**
   * @brief Get next batch training samples internally
   * @param[in]    size      size of training samples to get
   * @param[out]   batch     a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352 353 354

  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch) = 0;

protected:
  DataConfig config_;
  bool skipShuffle_;
  float usageRatio_;
  bool useGpu_;
  std::unique_ptr<DoubleBuffer> doubleBuffer_;
  ThreadLocal<std::vector<MatrixPtr>> constantSlots_;
Q
qijun 已提交
355 356 357 358 359 360
  /**
   * @@brief Get next batch training samples from buffer
   * @param[in]    size      size of training samples to get
   * @param[out]   batch     a batch of training samples
   * @return actual size of obtained training samples
   */
Z
zhangjinchao01 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  int64_t getNextBatchFromBuffer(int64_t size, DataBatch* batch);

  void initAsyncLoader();
};

/**
 * A data provider which does nothing. It only serves as providing
 * necessary configurations such as stream_names
 */
class DummyDataProvider : public DataProvider {
public:
  DummyDataProvider(const DataConfig& config, bool useGpu)
      : DataProvider(config, useGpu) {}
  virtual void shuffle() {}
  virtual void reset() { DataProvider::reset(); }
  virtual int64_t getSize() { return 0; }
  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch) {
    (void)size;
    (void)batch;
    return 0;
  }
};

384 385 386
/**
 * Data provider for one input and one integer label.
 */
Z
zhangjinchao01 已提交
387 388
class SimpleDataProviderBase : public DataProvider {
protected:
389 390 391 392
  /// sample feature dimension
  int64_t sampleDim_;
  /// the number of samples
  int64_t bufferCapacity_;
Z
zhangjinchao01 已提交
393
  int64_t sampleNumInBuf_;
394 395 396 397
  /// next item to read in buffer
  int64_t nextItemIndex_;
  /// some user defined info for validation
  bool withInfo_;
Z
zhangjinchao01 已提交
398

399
  /// data buffer: bufferCapacity_ * nDataDim_
Z
zhangjinchao01 已提交
400 401
  CpuMatrixPtr hInputDataBuf_;

402
  /// label buffer:bufferCapacity_ * 1
Z
zhangjinchao01 已提交
403 404
  CpuIVectorPtr hInputLabelBuf_;

405
  /// info buffer:bufferCapacity_ * 1
Z
zhangjinchao01 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  CpuIVectorPtr hInputInfoBuf_;

  ThreadLocal<MatrixPtr> dataBatch_;
  ThreadLocal<IVectorPtr> labelBatch_;
  ThreadLocal<IVectorPtr> infoBatch_;

  RWLock lock_;

public:
  SimpleDataProviderBase(const DataConfig& config, bool useGpu, bool withInfo);
  ~SimpleDataProviderBase() {}

  void shuffle();

  virtual void reset();

  virtual int64_t getSize();

  virtual int64_t getNextBatchInternal(int64_t size, DataBatch* batch);

426
  /// return the number of samples in the buffer
Z
zhangjinchao01 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  int64_t fillBuffer();

protected:
  /**
   * @brief Fill at most size samples into data and label.
   *
   * Each input is stored in contiguous memory locations in data.
   *
   * data[n * sampleDim_] .. data[n * sampleDim_ + sampleDim_ - 1] is for
   * the input of the n-th sample.
   *
   * label[n] is the label for the n-th sample.
   */
  virtual int64_t fillBufferImp(real* data, int* label, int* info,
                                int64_t size) = 0;
};

class SimpleDataProvider : public SimpleDataProviderBase {
public:
  SimpleDataProvider(const DataConfig& config, bool useGpu);
  ~SimpleDataProvider();
  virtual void reset();

protected:
  void loadData(const std::string& fileName);
  void loadDataFile(const std::string& fileName);
  virtual int64_t fillBufferImp(real* data, int* label, int* info,
                                int64_t size);

protected:
  size_t currentSampleIndex_;
  std::vector<int> labels_;
  std::vector<real> data_;
};

}  // namespace paddle