sparse_utils_kernel.cu 25.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/execution_policy.h>
#include <thrust/remove.h>

18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
20 21
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
22
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
23
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
24

Z
zyfncg 已提交
25 26
#include "paddle/fluid/platform/enforce.h"

27
namespace phi {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
  auto nums_meta =
104 105 106 107 108 109
      phi::DenseTensorMeta(DataType::INT32, {1}, phi::DataLayout::NCHW);
  DenseTensor nums = phi::Empty(dev_ctx, std::move(nums_meta));
  auto x_dims_meta = phi::DenseTensorMeta(DataType::INT64,
                                          {static_cast<int64_t>(x_dims.size())},
                                          phi::DataLayout::NCHW);
  DenseTensor d_x_dims = phi::Empty(dev_ctx, std::move(x_dims_meta));
110 111 112 113 114 115 116 117 118 119 120 121

  const auto place = dev_ctx.GetPlace();

  // 1. get numbers of non zero elements, and get the index of non zero elements
  int* nums_ptr = nums.mutable_data<int>(place);
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemsetAsync(nums_ptr, 0, sizeof(int), dev_ctx.stream()));
#endif
122
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
123 124

  auto temp_indexs_meta =
125 126
      phi::DenseTensorMeta(DataType::INT32, {rows}, phi::DataLayout::NCHW);
  DenseTensor temp_indexs = phi::Empty(dev_ctx, std::move(temp_indexs_meta));
127
  int* temp_indexs_ptr = temp_indexs.mutable_data<int>(place);
128 129 130 131
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(&non_zero_num,
                                            nums_ptr,
                                            sizeof(int),
                                            hipMemcpyDeviceToHost,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(&non_zero_num,
                                             nums_ptr,
                                             sizeof(int),
                                             cudaMemcpyDeviceToHost,
                                             dev_ctx.stream()));
#endif

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemcpyAsync(d_x_dims.mutable_data<int64_t>(place),
                     x_dims.Get(),
                     x_dims.size() * sizeof(x_dims[0]),
                     hipMemcpyHostToDevice,
                     dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemcpyAsync(d_x_dims.mutable_data<int64_t>(place),
                      x_dims.Get(),
                      x_dims.size() * sizeof(x_dims[0]),
                      cudaMemcpyHostToDevice,
                      dev_ctx.stream()));
#endif

  dev_ctx.Wait();  // wait the copy

176 177
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
178 179 180 181 182 183
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
184 185

  // 3. calc indices by indexs and get values by indexs
186 187 188 189 190 191 192 193 194 195 196 197
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
198 199 200
  out->SetMember(indices, values, x_dims, true);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
__global__ void GetBatchSizes(const int64_t* crows,
                              const int rows,
                              const int batchs,
                              int* batch_sizes) {
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

__global__ void ConvertCsrCrowsToCooRows(const int64_t* crows_ptr,
                                         const int* crows_offsets,
                                         int64_t* rows_ptr,
                                         int64_t* batch_ptr,
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
  const int64_t* csr_crows_data = csr_crows.data<int64_t>();
  const int64_t* csr_cols_data = csr_cols.data<int64_t>();
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta indices_meta(
      DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
254 255
  DenseTensorMeta values_meta(
      x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
256
  DenseTensorMeta offsets_meta(DataType::INT32, {batchs}, DataLayout::NCHW);
257 258 259
  DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
  DenseTensor offsets = phi::Empty(dev_ctx, std::move(offsets_meta));
260 261 262 263 264 265 266 267 268
  int64_t* coo_indices = indices.mutable_data<int64_t>(place);
  int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  int64_t* coo_rows_data =
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
  int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  int* offsets_ptr = batchs == 1 ? nullptr : offsets.mutable_data<int>(place);
  T* coo_values_data = values.mutable_data<T>(place);

  if (batchs > 1) {
269 270
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
    GetBatchSizes<<<config.block_per_grid.x, config.thread_per_block.x>>>(
271 272 273 274 275 276 277 278 279 280 281 282
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

283 284 285 286
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
  ConvertCsrCrowsToCooRows<<<config.block_per_grid,
                             config.thread_per_block.x>>>(
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
      csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_cols_data,
                                            csr_cols_data,
                                            sizeof(int64_t) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(coo_values_data,
                                            csr_values_data,
                                            sizeof(T) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_cols_data,
                                             csr_cols_data,
                                             sizeof(int64_t) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(coo_values_data,
                                             csr_values_data,
                                             sizeof(T) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
#endif

  out->SetMember(indices, values, x_dims, true);
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
__global__ void GetBatchsOffset(const int64_t* batchs_ptr,
                                const int non_zero_num,
                                int64_t* batchs_offset) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
      batchs_offset[batchs_ptr[i]] = i + 1;
    }
  }
}

__global__ void ConvertCooRowsToCsrCrows(
    const int64_t* batchs_offset,  // can be null if batchs = 1
    const int64_t* coo_rows_data,
    int64_t* csr_crows_data,
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
  if (batch_non_zero_num == 0) return;
  int batch_start = 0;
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
  auto* coo_rows_ptr = coo_rows_data + batch_start;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
      for (int j = 0; j <= coo_rows_ptr[0]; j++) {
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
      for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
      for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
}

template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
371
                    phi::errors::InvalidArgument(
372 373 374 375 376 377 378
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
379 380 381 382 383 384 385
  phi::DenseTensor non_zero_crows =
      phi::Empty<int64_t>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor non_zero_cols = phi::Empty<int64_t>(dev_ctx, {non_zero_num});
  phi::DenseTensor non_zero_elements = phi::Empty<T>(dev_ctx, {non_zero_num});
  int64_t* csr_crows_data = non_zero_crows.data<int64_t>();
  int64_t* csr_cols_data = non_zero_cols.data<int64_t>();
  T* csr_values_data = non_zero_elements.data<T>();
386 387 388 389 390 391 392 393 394 395 396 397 398

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
  const int64_t* batchs_ptr = coo_indices.data<int64_t>();
  const int64_t* coo_rows_data =
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
  const int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  const T* coo_values_data = coo_values.data<T>();

  if (!x.coalesced()) {
    // TODO(zhangkahuo): call coalesced() to distinct and sort the indices
  }

399
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
400 401
  if (batchs > 1) {
    DenseTensorMeta batchs_meta(DataType::INT64, {batchs}, DataLayout::NCHW);
Z
zyfncg 已提交
402 403
    phi::DenseTensor batchs_offset = phi::Empty<int64_t>(dev_ctx, {batchs});
    int64_t* batchs_offset_ptr = batchs_offset.data<int64_t>();
404 405 406 407
    GetBatchsOffset<<<config.block_per_grid.x,
                      config.thread_per_block.x,
                      0,
                      dev_ctx.stream()>>>(
408
        batchs_ptr, non_zero_num, batchs_offset_ptr);
409 410 411 412 413
    config.block_per_grid.y = batchs;
    ConvertCooRowsToCsrCrows<<<config.block_per_grid,
                               config.thread_per_block.x,
                               0,
                               dev_ctx.stream()>>>(
414 415
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
416 417 418 419
    ConvertCooRowsToCsrCrows<<<config.block_per_grid.x,
                               config.thread_per_block.x,
                               0,
                               dev_ctx.stream()>>>(
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_cols_data,
                                            coo_cols_data,
                                            sizeof(int64_t) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(csr_values_data,
                                            coo_values_data,
                                            sizeof(T) * non_zero_num,
                                            hipMemcpyDeviceToDevice,
                                            dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_cols_data,
                                             coo_cols_data,
                                             sizeof(int64_t) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(csr_values_data,
                                             coo_values_data,
                                             sizeof(T) * non_zero_num,
                                             cudaMemcpyDeviceToDevice,
                                             dev_ctx.stream()));
#endif
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
template <typename ValueT, typename IndicesT>
__global__ void KernelSparseCooToDense(const IndicesT* indices,
                                       const IndicesT* sparse_offsets,
                                       const ValueT* data,
                                       ValueT* dense_data,
                                       const IndicesT non_zero_num,
                                       const int64_t base_offset,
                                       const int64_t sparse_dim) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
487 488 489 490
  *out = phi::Empty(dev_ctx,
                    phi::DenseTensorMeta(
                        x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
491 492 493 494 495 496 497 498 499 500 501
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

502 503
  auto sparse_offset_meta = phi::DenseTensorMeta(
      DataType::INT64, {sparse_dim}, phi::DataLayout::NCHW);
504
  DenseTensor d_sparse_offsets = Empty(dev_ctx, std::move(sparse_offset_meta));
Z
zhangkaihuo 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemcpyAsync(d_sparse_offsets.mutable_data<int64_t>(place),
                     sparse_offsets.data(),
                     sparse_dim * sizeof(int64_t),
                     hipMemcpyHostToDevice,
                     dev_ctx.stream()));

  PADDLE_ENFORCE_GPU_SUCCESS(
      hipMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream()));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemcpyAsync(d_sparse_offsets.mutable_data<int64_t>(place),
                      sparse_offsets.data(),
                      sparse_dim * sizeof(int64_t),
                      cudaMemcpyHostToDevice,
                      dev_ctx.stream()));
  PADDLE_ENFORCE_GPU_SUCCESS(
      cudaMemsetAsync(out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream()));
#endif
526 527
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
528

529 530 531 532
  KernelSparseCooToDense<T, int64_t><<<config.block_per_grid.x,
                                       config.thread_per_block.x,
                                       0,
                                       dev_ctx.stream()>>>(
Z
zhangkaihuo 已提交
533 534 535 536 537 538 539 540 541
      indices.data<int64_t>(),
      d_sparse_offsets.data<int64_t>(),
      x_data,
      out_data,
      non_zero_num,
      base_offset,
      sparse_dim);
}

542
}  // namespace sparse
543
}  // namespace phi
544

545
PD_REGISTER_KERNEL(dense_to_sparse_coo,
546 547
                   GPU,
                   ALL_LAYOUT,
548
                   phi::sparse::DenseToSparseCooKernel,
549 550
                   float,
                   double,
551
                   phi::dtype::float16,
552 553 554 555 556
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
557

558
PD_REGISTER_KERNEL(sparse_csr_to_coo,
559 560
                   GPU,
                   ALL_LAYOUT,
561
                   phi::sparse::SparseCsrToCooKernel,
562 563
                   float,
                   double,
564
                   phi::dtype::float16,
565 566 567 568 569
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
570

571
PD_REGISTER_KERNEL(sparse_coo_to_csr,
572 573
                   GPU,
                   ALL_LAYOUT,
574
                   phi::sparse::SparseCooToCsrKernel,
575 576
                   float,
                   double,
577
                   phi::dtype::float16,
578 579 580 581 582 583
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

584
PD_REGISTER_KERNEL(dense_to_sparse_csr,
585 586
                   GPU,
                   ALL_LAYOUT,
587
                   phi::sparse::DenseToSparseCsrKernel,
588 589
                   float,
                   double,
590
                   phi::dtype::float16,
591 592 593 594 595
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
596

597
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
598 599
                   GPU,
                   ALL_LAYOUT,
600
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
601 602
                   float,
                   double,
603
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
604 605 606 607 608 609
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

610
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
611 612
                   GPU,
                   ALL_LAYOUT,
613
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
614 615
                   float,
                   double,
616
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
617 618 619 620 621
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

PD_REGISTER_KERNEL(coo_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
652 653 654 655 656 657 658 659 660 661 662 663

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}