data_transform.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17
#include "paddle/phi/api/lib/kernel_dispatch.h"
18
#include "paddle/phi/api/lib/utils/allocator.h"
19
#include "paddle/phi/backends/all_context.h"
20
#include "paddle/phi/core/kernel_registry.h"
21
#include "paddle/phi/kernels/cast_kernel.h"
22
#include "paddle/phi/kernels/copy_kernel.h"
23
#include "paddle/phi/kernels/transfer_layout_kernel.h"
24

25
#include "paddle/fluid/framework/tensor_util.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
41 42 43 44 45 46 47 48 49 50 51
  // NOTE(dev): The default value of TransformFlag is True, if it is set with
  // False
  // somewhere such as api.yaml or backward.yaml that means we should skip data
  // transform. Because "stop_transform_" has highest priority.
  if (!transform_flag.need_trans_backend()) {
    return false;
  }
  bool ret = input.GetType() == AllocationType::GPUPINNED ||
             (target != Backend::ALL_BACKEND &&
              phi::TransToPhiBackend(input) !=
                  (target != Backend::GPUDNN ? target : Backend::GPU));
52 53 54 55 56 57 58 59 60 61 62 63
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

64 65
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
66 67 68 69
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
70 71
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
72
  } else {
73
    PADDLE_THROW(phi::errors::PreconditionNotMet(
74 75 76 77 78
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
79 80 81
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
82 83
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
84
      return phi::Cast<float>(dev_ctx, tensor, dtype);
85
    case DataType::FLOAT64:
86
      return phi::Cast<double>(dev_ctx, tensor, dtype);
87
    case DataType::INT32:
88
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
89
    case DataType::INT64:
90
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
91
    case DataType::FLOAT16:
92
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
93
    case DataType::BFLOAT16:
94
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
95
    case DataType::BOOL:
96
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
97
    case DataType::INT16:
98
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
99
    case DataType::UINT8:
100
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
101
    default:
102
      PADDLE_THROW(phi::errors::Unimplemented(
103 104 105 106 107 108
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
109 110 111
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
112 113
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
114
      return phi::Cast<float>(dev_ctx, tensor, dtype);
115
    case DataType::FLOAT64:
116
      return phi::Cast<double>(dev_ctx, tensor, dtype);
117
    case DataType::INT32:
118
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
119
    case DataType::INT64:
120
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
121
    case DataType::FLOAT16:
122
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
123
    case DataType::BOOL:
124
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
125
    case DataType::INT16:
126
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
127
    case DataType::UINT8:
128
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
129
    default:
130
      PADDLE_THROW(phi::errors::Unimplemented(
131 132 133 134 135 136
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

137 138
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
139 140 141 142 143
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

144 145
  DefaultAllocator alloc(tensor.place());
  phi::DenseTensor out(&alloc, {dtype, tensor.dims(), tensor.layout()});
146 147

  if (platform::is_cpu_place(tensor.place())) {
148
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
149 150 151
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
152
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
153 154 155
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
156
    PADDLE_THROW(phi::errors::Unimplemented(
157 158 159 160 161
        "Place type is not supported when casting data type."));
  }
  return out;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
inline phi::DenseTensor TransDataPlace(const phi::DenseTensor& tensor,
                                       Place dst_place) {
  VLOG(3) << "DeviceTransform in, src_place " << tensor.place()
          << " dst_place: " << dst_place;

  DefaultAllocator alloc(dst_place);
  phi::DenseTensor out(&alloc,
                       {tensor.dtype(), tensor.dims(), tensor.layout()});

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  // NOTE(yy): TransDataPlace should wait for computation of input.
  if (!platform::is_cuda_pinned_place(tensor.place())) {
    pool.Get(tensor.place())->Wait();
    pool.Get(dst_place)->Wait();
  }
#endif

  // FIXME(zcd): TransDataPlace is used to transform data from GPU to CPU and
  // the enforced checkings have been done in GetDeviceContext, so the
  // `dev_ctx->Wait()` is necessary. But `dev_ctx->Wait()` will make the program
  // slow, especially when the number of elements is little, for example,
  // the elements of learning rate are one and it's CPU side.
  // One solution is to use a CUDA kernel to complete the copy operation when
  // the transforming is from CPU to GPU and the number of elements is little.
  // But the embarrassment is that this solution this solution makes training
  // slower.
  paddle::framework::TensorCopySync(tensor, dst_place, &out);
  return out;
}

193
phi::DenseTensor TransformData(phi::DenseTensor* tensor,
194 195
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
196 197 198
  phi::DenseTensor out = *tensor;
  bool trans_layout = false;
  bool trans_dtype = false;
199
  if (NeedTransformLayout(
200
          tensor->layout(), target_args_def.layout, transform_flag)) {
201
    out = TransDataLayout(out, target_args_def.layout);
202
    trans_layout = true;
203 204 205
  }

  if (NeedTransformDataType(
206
          tensor->dtype(), target_args_def.dtype, transform_flag)) {
207
    out = TransDataType(out, target_args_def.dtype);
208
    trans_dtype = true;
209 210 211 212
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
213
    out = TransDataPlace(out, phi::TransToPhiPlace(target_args_def.backend));
214 215 216 217
    if (!trans_layout && !trans_dtype &&
        tensor->place().GetType() == AllocationType::GPUPINNED) {
      tensor->ShareBufferWith(out);
    }
218 219 220 221
  }
  return out;
}

222
std::shared_ptr<phi::DenseTensor> PrepareData(
223
    const Tensor& input,
224
    const phi::TensorArgDef& target_args_def,
225 226
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
Z
zyfncg 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
  if (tensor_in) {
    phi::DenseTensor& dense_tensor =
        *static_cast<phi::DenseTensor*>(tensor_in.get());
    if (!transform_flag.NeedTransform() || !dense_tensor.initialized() ||
        (!NeedTransformPlace(
             dense_tensor.place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             dense_tensor.dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             dense_tensor.layout(), target_args_def.layout, transform_flag))) {
      return std::static_pointer_cast<phi::DenseTensor>(tensor_in);
    }
    phi::DenseTensor out =
240
        TransformData(&dense_tensor, target_args_def, transform_flag);
Z
zyfncg 已提交
241
    return std::make_shared<phi::DenseTensor>(std::move(out));
242
  }
Z
zyfncg 已提交
243
  return nullptr;
244 245
}

246
paddle::optional<phi::DenseTensor> PrepareData(
247 248 249 250
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
251
    return {*PrepareData(*input, target_args_def, transform_flag)};
H
hong 已提交
252
  }
253
  return paddle::none;
H
hong 已提交
254 255
}

256
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
257
    const std::vector<Tensor>& inputs,
258
    const phi::TensorArgDef& target_args_def,
259
    const TransformFlag& transform_flag) {
260
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
261 262 263 264 265 266 267 268 269 270 271 272
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
273
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
274 275
    } else {
      pt_tensors->emplace_back(
276
          TransformData((static_cast<phi::DenseTensor*>(tensor_in.get())),
277 278 279 280 281
                        target_args_def,
                        transform_flag));
    }
  }

282
  return pt_tensors;
283 284 285 286
}

}  // namespace experimental
}  // namespace paddle