api_custom_impl.cc 62.9 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
20
#include "paddle/phi/api/lib/tensor_copy.h"
Z
zyfncg 已提交
21
#include "paddle/phi/common/type_traits.h"
22
#include "paddle/phi/core/compat/convert_utils.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
25
#include "paddle/phi/infermeta/backward.h"
26 27 28
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
29
#include "paddle/phi/infermeta/unary.h"
30

31
#include "glog/logging.h"
32

33 34 35
namespace paddle {
namespace experimental {

C
chentianyu03 已提交
36 37 38 39 40 41 42 43
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adam_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
44 45
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
71

C
chentianyu03 已提交
72
  std::string kernel_name = "adam";
73 74 75 76
  if (!phi::DenseTensor::classof(grad.impl().get())) {
    kernel_name = "adam_dense_param_sparse_grad";
  }

C
chentianyu03 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_lr = PrepareData(learning_rate, kernel.InputAt(2), {});
  auto input_moment1 = PrepareData(moment1, kernel.InputAt(3), {});
  auto input_moment2 = PrepareData(moment2, kernel.InputAt(4), {});
  auto input_beta1_pow = PrepareData(beta1_pow, kernel.InputAt(5), {});
  auto input_beta2_pow = PrepareData(beta2_pow, kernel.InputAt(6), {});
90 91
  auto input_master_param = PrepareData(master_param, kernel.InputAt(7), {});
  auto input_skip_update = PrepareData(skip_update, kernel.InputAt(8), {});
C
chentianyu03 已提交
92 93 94 95 96 97 98 99

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_moment1.get();
  auto kernel_out_2 = input_moment2.get();
  auto kernel_out_3 = input_beta1_pow.get();
  auto kernel_out_4 = input_beta2_pow.get();
  phi::DenseTensor* kernel_out_5 = nullptr;
100 101
  if (input_master_param) {
    kernel_out_5 = input_master_param.get_ptr();
C
chentianyu03 已提交
102 103
  }

104
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);
C
chentianyu03 已提交
105

106
  auto input_meta_ref_skip_update = MakeMetaTensor(input_skip_update);
C
chentianyu03 已提交
107 108 109 110 111 112 113 114

  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  if (phi::DenseTensor::classof(grad.impl().get())) {
    auto input_grad = PrepareData(grad, kernel.InputAt(1), {});

    phi::AdamInferMeta(MakeMetaTensor(*input_param),
                       MakeMetaTensor(*input_grad),
                       MakeMetaTensor(*input_lr),
                       MakeMetaTensor(*input_moment1),
                       MakeMetaTensor(*input_moment2),
                       MakeMetaTensor(*input_beta1_pow),
                       MakeMetaTensor(*input_beta2_pow),
                       input_meta_ref_master_param,
                       input_meta_ref_skip_update,
                       beta1,
                       beta2,
                       epsilon,
                       lazy_mode,
                       min_row_size_to_use_multithread,
                       multi_precision,
                       use_global_beta_pow,
                       &meta_out_0,
                       &meta_out_1,
                       &meta_out_2,
                       &meta_out_3,
                       &meta_out_4,
                       &meta_out_5);
C
chentianyu03 已提交
140

141 142 143 144 145 146 147 148
    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
149 150
                                      const paddle::optional<phi::DenseTensor>&,
                                      const paddle::optional<phi::DenseTensor>&,
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                                      const Scalar&,
                                      const Scalar&,
                                      const Scalar&,
                                      bool,
                                      int64_t,
                                      bool,
                                      bool,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

    (*kernel_fn)(*dev_ctx,
                 *input_param,
                 *input_grad,
                 *input_lr,
                 *input_moment1,
                 *input_moment2,
                 *input_beta1_pow,
                 *input_beta2_pow,
                 input_master_param,
                 input_skip_update,
                 beta1,
                 beta2,
                 epsilon,
                 lazy_mode,
                 min_row_size_to_use_multithread,
                 multi_precision,
                 use_global_beta_pow,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  } else {
    auto input_grad = TensorToSelectedRows(grad);

    phi::AdamInferMeta(MakeMetaTensor(*input_param),
                       MakeMetaTensor(*input_grad),
                       MakeMetaTensor(*input_lr),
                       MakeMetaTensor(*input_moment1),
                       MakeMetaTensor(*input_moment2),
                       MakeMetaTensor(*input_beta1_pow),
                       MakeMetaTensor(*input_beta2_pow),
                       input_meta_ref_master_param,
                       input_meta_ref_skip_update,
                       beta1,
                       beta2,
                       epsilon,
                       lazy_mode,
                       min_row_size_to_use_multithread,
                       multi_precision,
                       use_global_beta_pow,
                       &meta_out_0,
                       &meta_out_1,
                       &meta_out_2,
                       &meta_out_3,
                       &meta_out_4,
                       &meta_out_5);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::SelectedRows&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
223 224
                                      const paddle::optional<phi::DenseTensor>&,
                                      const paddle::optional<phi::DenseTensor>&,
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                                      const Scalar&,
                                      const Scalar&,
                                      const Scalar&,
                                      bool,
                                      int64_t,
                                      bool,
                                      bool,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

    (*kernel_fn)(*dev_ctx,
                 *input_param,
                 *input_grad,
                 *input_lr,
                 *input_moment1,
                 *input_moment2,
                 *input_beta1_pow,
                 *input_beta2_pow,
                 input_master_param,
                 input_skip_update,
                 beta1,
                 beta2,
                 epsilon,
                 lazy_mode,
                 min_row_size_to_use_multithread,
                 multi_precision,
                 use_global_beta_pow,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }
C
chentianyu03 已提交
264 265 266
  return api_output;
}

267
////////////////// Forward api impls //////////////////////
268

C
chentianyu03 已提交
269 270 271 272 273 274 275 276
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adamw_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
277 278
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    float lr_ratio,
    float coeff,
    bool with_decay,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "adamw";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_lr = PrepareData(learning_rate, kernel.InputAt(2), {});
  auto input_moment1 = PrepareData(moment1, kernel.InputAt(3), {});
  auto input_moment2 = PrepareData(moment2, kernel.InputAt(4), {});
  auto input_beta1_pow = PrepareData(beta1_pow, kernel.InputAt(5), {});
  auto input_beta2_pow = PrepareData(beta2_pow, kernel.InputAt(6), {});
323 324
  auto input_master_param = PrepareData(master_param, kernel.InputAt(7), {});
  auto input_skip_update = PrepareData(skip_update, kernel.InputAt(8), {});
C
chentianyu03 已提交
325 326 327 328 329 330 331 332

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_moment1.get();
  auto kernel_out_2 = input_moment2.get();
  auto kernel_out_3 = input_beta1_pow.get();
  auto kernel_out_4 = input_beta2_pow.get();
  phi::DenseTensor* kernel_out_5 = nullptr;
333 334
  if (input_master_param) {
    kernel_out_5 = input_master_param.get_ptr();
C
chentianyu03 已提交
335 336
  }

337
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);
C
chentianyu03 已提交
338

339
  auto input_meta_ref_skip_update = MakeMetaTensor(input_skip_update);
C
chentianyu03 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::AdamwInferMeta(MakeMetaTensor(*input_param),
                      MakeMetaTensor(*input_grad),
                      MakeMetaTensor(*input_lr),
                      MakeMetaTensor(*input_moment1),
                      MakeMetaTensor(*input_moment2),
                      MakeMetaTensor(*input_beta1_pow),
                      MakeMetaTensor(*input_beta2_pow),
                      input_meta_ref_master_param,
                      input_meta_ref_skip_update,
                      beta1,
                      beta2,
                      epsilon,
                      lr_ratio,
                      coeff,
                      with_decay,
                      lazy_mode,
                      min_row_size_to_use_multithread,
                      multi_precision,
                      use_global_beta_pow,
                      &meta_out_0,
                      &meta_out_1,
                      &meta_out_2,
                      &meta_out_3,
                      &meta_out_4,
                      &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
382 383
                                    const paddle::optional<phi::DenseTensor>&,
                                    const paddle::optional<phi::DenseTensor>&,
C
chentianyu03 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
                                    const Scalar&,
                                    const Scalar&,
                                    const Scalar&,
                                    float,
                                    float,
                                    bool,
                                    bool,
                                    int64_t,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_lr,
               *input_moment1,
               *input_moment2,
               *input_beta1_pow,
               *input_beta2_pow,
               input_master_param,
               input_skip_update,
               beta1,
               beta2,
               epsilon,
               lr_ratio,
               coeff,
               with_decay,
               lazy_mode,
               min_row_size_to_use_multithread,
               multi_precision,
               use_global_beta_pow,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2,
               kernel_out_3,
               kernel_out_4,
               kernel_out_5);

  return api_output;
}

H
hong 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
Tensor conv3d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv3d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv3d", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv3d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649
void conv2d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad) {
H
hong 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

691 692
  auto kernel_out_0 = SetKernelOutput(kernel_backend, input_grad);
  auto kernel_out_1 = SetKernelOutput(kernel_backend, filter_grad);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
                                  kernel_out_0 ? &meta_out_0 : nullptr,
                                  kernel_out_1 ? &meta_out_1 : nullptr);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }
}

void conv3d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv3d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv3d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv3d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

  auto kernel_out_0 = SetKernelOutput(kernel_backend, input_grad);
  auto kernel_out_1 = SetKernelOutput(kernel_backend, filter_grad);
H
hong 已提交
794 795 796 797 798
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
799 800
                                  kernel_out_0 ? &meta_out_0 : nullptr,
                                  kernel_out_1 ? &meta_out_1 : nullptr);
H
hong 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }
}

838
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
839
  Tensor out;
840
  copy(x, place, blocking, &out);
841 842 843
  return out;
}

Z
zyfncg 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  Tensor api_output;

  if (phi::DenseTensor::classof(weight.impl().get())) {
    const auto& kernel =
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
    VLOG(6) << "embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  } else {
    const auto& kernel =
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "sparse_weight_embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
    VLOG(6) << "sparse_weight_embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::SelectedRows&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  }
  return api_output;
}

918
std::vector<Tensor> split_impl(const Tensor& x,
919
                               const IntArray& num_or_sections,
920 921
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
922
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
923 924 925 926

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
927

928
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
929 930 931 932 933 934 935 936 937 938 939
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
940
  if (num_or_sections.size() == 1) {
C
chentianyu03 已提交
941 942
    out_number = num_or_sections.GetData()[0];
  } else {
943
    out_number = num_or_sections.size();
C
chentianyu03 已提交
944 945 946 947
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
948
  std::vector<phi::MetaTensor> meta_outs;
949 950 951
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
952 953
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
954
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
955 956
  }

957
  phi::SplitInferMeta(
958
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
959 960

  using kernel_signature = void (*)(const platform::DeviceContext&,
961
                                    const phi::DenseTensor&,
962
                                    const phi::IntArray&,
963 964
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
965 966 967
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
968
               phi::IntArray(num_or_sections),
969
               phi::Scalar(axis),
C
chentianyu03 已提交
970 971 972 973
               dense_outs);

  return out;
}
974

975 976 977 978 979
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
980
    const paddle::optional<Tensor>& master_param,
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
1021
  auto input_master_param = PrepareData(master_param, kernel.InputAt(4), {});
1022 1023 1024 1025 1026

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
1027 1028
  if (input_master_param) {
    kernel_out_2 = input_master_param.get_ptr();
1029 1030
  }

1031 1032
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
1073
                                    const paddle::optional<phi::DenseTensor>&,
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

Z
zyfncg 已提交
1104 1105 1106 1107
std::tuple<Tensor, Tensor> sgd_impl(
    const Tensor& param,
    const Tensor& learning_rate,
    const Tensor& grad,
1108
    const paddle::optional<Tensor>& master_param,
Z
zyfncg 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    bool multi_precision) {
  DataType kernel_data_type = ParseDataType(param);
  auto kernel_key_set = ParseKernelKeyByInputArgs(param, learning_rate, grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "sgd API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  const auto& param_tensor = param.impl();
  std::string kernel_name = "sgd";
  if (phi::DenseTensor::classof(param_tensor.get())) {
    if (!phi::DenseTensor::classof(grad.impl().get())) {
      kernel_name = "sgd_dense_param_sparse_grad";
    }
  } else {
    kernel_name = "sgd_sparse_param_sparse_grad";
  }
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name,
      {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto in_learning_rate =
      PrepareData(learning_rate, kernel.InputAt(1), {false, true, true, true});

  std::tuple<Tensor, Tensor> out;
  std::get<0>(out) = param;
  if (master_param) {
    std::get<1>(out) = *master_param;
  }
  phi::MetaTensor meta_out_0(std::get<0>(out).impl().get());
  phi::MetaTensor meta_out_1(master_param ? std::get<1>(out).impl().get()
                                          : nullptr);

  if (phi::DenseTensor::classof(param_tensor.get())) {
    auto in_param = PrepareData(param, kernel.InputAt(0), {});
1146 1147
    auto in_master_param_opt = PrepareData(master_param, kernel.InputAt(3), {});
    auto master_param_meta_opt = MakeMetaTensor(in_master_param_opt);
Z
zyfncg 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

    phi::DenseTensor* kernel_out_0 =
        SetKernelOutput(kernel_key.backend(), &std::get<0>(out));
    phi::DenseTensor* kernel_out_1 =
        master_param
            ? static_cast<phi::DenseTensor*>(std::get<1>(out).impl().get())
            : nullptr;

    if (phi::DenseTensor::classof(grad.impl().get())) {
      auto in_grad = PrepareData(grad, kernel.InputAt(2), {});
      SgdInferMeta(MakeMetaTensor(*in_param),
                   MakeMetaTensor(*in_learning_rate),
                   MakeMetaTensor(*in_grad),
                   master_param_meta_opt,
                   multi_precision,
                   &meta_out_0,
                   &meta_out_1);

      using kernel_signature =
          void (*)(const platform::DeviceContext&,
                   const phi::DenseTensor&,
                   const phi::DenseTensor&,
                   const phi::DenseTensor&,
1171
                   const paddle::optional<phi::DenseTensor>&,
Z
zyfncg 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
                   bool,
                   phi::DenseTensor*,
                   phi::DenseTensor*);

      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *in_param,
                   *in_learning_rate,
                   *in_grad,
                   in_master_param_opt,
                   multi_precision,
                   kernel_out_0,
                   kernel_out_1);
    } else {
      auto in_grad = TensorToSelectedRows(grad);
      SgdInferMeta(MakeMetaTensor(*in_param),
                   MakeMetaTensor(*in_learning_rate),
                   MakeMetaTensor(*in_grad),
                   master_param_meta_opt,
                   multi_precision,
                   &meta_out_0,
                   &meta_out_1);

      using kernel_signature =
          void (*)(const platform::DeviceContext&,
                   const phi::DenseTensor&,
                   const phi::DenseTensor&,
                   const phi::SelectedRows&,
1200
                   const paddle::optional<phi::DenseTensor>&,
Z
zyfncg 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
                   bool,
                   phi::DenseTensor*,
                   phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *in_param,
                   *in_learning_rate,
                   *in_grad,
                   in_master_param_opt,
                   multi_precision,
                   kernel_out_0,
                   kernel_out_1);
    }
  } else {
    auto in_param = TensorToSelectedRows(param);
    auto in_grad = TensorToSelectedRows(grad);
1217
    auto in_master_param_opt = TensorToSelectedRows(master_param);
Z
zyfncg 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    auto master_param_meta = MakeMetaTensor(in_master_param_opt);

    phi::SelectedRows* kernel_out_0 =
        SetSelectedRowsKernelOutput(kernel_key.backend(), &std::get<0>(out));
    phi::SelectedRows* kernel_out_1 =
        master_param
            ? static_cast<phi::SelectedRows*>(std::get<1>(out).impl().get())
            : nullptr;

    SgdInferMeta(MakeMetaTensor(*in_param),
                 MakeMetaTensor(*in_learning_rate),
                 MakeMetaTensor(*in_grad),
1230
                 master_param_meta,
Z
zyfncg 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
                 multi_precision,
                 &meta_out_0,
                 &meta_out_1);

    using kernel_signature =
        void (*)(const platform::DeviceContext&,
                 const phi::SelectedRows&,
                 const phi::DenseTensor&,
                 const phi::SelectedRows&,
1240
                 const paddle::optional<phi::SelectedRows>&,
Z
zyfncg 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
                 bool,
                 phi::SelectedRows*,
                 phi::SelectedRows*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    (*kernel_fn)(*dev_ctx,
                 *in_param,
                 *in_learning_rate,
                 *in_grad,
                 in_master_param_opt,
                 multi_precision,
                 kernel_out_0,
                 kernel_out_1);
  }
  return out;
}

1257 1258 1259 1260 1261 1262 1263
////////////////// Backward(grad) api impls //////////////////////

// TODO(chenweihang):  the original sum grad op can support higher-level
// differentiation,
// but if we use this impl, it will not support. We need to be able to reuse
// the autograd API here, which is not yet implemented
// TODO(chenweihang): we should support call generated api in custom api impl
1264 1265 1266
void add_n_grad_impl(const std::vector<Tensor>& x,
                     const Tensor& out_grad,
                     std::vector<Tensor*> x_grad) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "add_n_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "add_n_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

1284
  auto dense_x_grad = SetKernelOutput(&x_grad);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    float,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  for (auto* dense_x_grad_t : dense_x_grad) {
    phi::MetaTensor meta_out(dense_x_grad_t);
    phi::UnchangedInferMeta(MakeMetaTensor(*dense_out_grad), &meta_out);
    (*kernel_fn)(
        *dev_ctx, *dense_out_grad, phi::Scalar(1.0), 0.0, true, dense_x_grad_t);
  }
}

H
hong 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

1431
void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "imag_grad", kernel_key);

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

1445
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

Z
zyfncg 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding_grad API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  if (phi::DenseTensor::classof(weight.impl().get())) {
    std::string kernel_name =
        sparse ? "embedding_sparse_grad" : "embedding_grad";
    const auto& kernel =
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->dims());
      meta_out.set_dtype(input_weight->dtype());
      kernel_out->set_height(input_weight->dims()[0]);

      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  } else {
    std::string kernel_name = sparse ? "sparse_weight_embedding_sparse_grad"
                                     : "sparse_weight_embedding_grad";
    const auto& kernel =
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->GetCompleteDims());
      meta_out.set_dtype(input_weight->dtype());
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  }
}

1575
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "real_grad", kernel_key);

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

1589
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

1600 1601
}  // namespace experimental
}  // namespace paddle