seqToseq_net.py 7.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
# edit-mode: -*- python -*-

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
from paddle.trainer_config_helpers import *


def seq_to_seq_data(data_dir,
                    is_generating,
                    dict_size=30000,
                    train_list='train.list',
                    test_list='test.list',
                    gen_list='gen.list',
                    gen_result='gen_result'):
    """
    Predefined seqToseq train data provider for application
    is_generating: whether this config is used for generating
    dict_size: word count of dictionary
    train_list: a text file containing a list of training data
    test_list: a text file containing a list of testing data
    gen_list: a text file containing a list of generating data
    gen_result: a text file containing generating result
    """
    src_lang_dict = os.path.join(data_dir, 'src.dict')
    trg_lang_dict = os.path.join(data_dir, 'trg.dict')
    src_dict = dict()
    for line_count, line in enumerate(open(src_lang_dict, "r")):
        src_dict[line.strip()] = line_count
    trg_dict = dict()
    for line_count, line in enumerate(open(trg_lang_dict, "r")):
        trg_dict[line.strip()] = line_count

    if is_generating:
        train_list = None
        test_list = os.path.join(data_dir, gen_list)
        trg_dict = None
    else:
        train_list = os.path.join(data_dir, train_list)
53
        test_list = os.path.join(data_dir, test_list)
Z
zhangjinchao01 已提交
54

55 56 57 58 59 60 61
    define_py_data_sources2(
        train_list,
        test_list,
        module="dataprovider",
        obj="process",
        args={"src_dict": src_dict,
              "trg_dict": trg_dict})
Z
zhangjinchao01 已提交
62

63 64 65 66 67
    return {
        "src_dict_path": src_lang_dict,
        "trg_dict_path": trg_lang_dict,
        "gen_result": gen_result
    }
Z
zhangjinchao01 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


def gru_encoder_decoder(data_conf,
                        is_generating,
                        word_vector_dim=512,
                        encoder_size=512,
                        decoder_size=512,
                        beam_size=3,
                        max_length=250):
    """
    A wrapper for an attention version of GRU Encoder-Decoder network
    is_generating: whether this config is used for generating
    encoder_size: dimension of hidden unit in GRU Encoder network
    decoder_size: dimension of hidden unit in GRU Decoder network
    word_vector_dim: dimension of word vector
    beam_size: expand width in beam search
    max_length: a stop condition of sequence generation
    """
    for k, v in data_conf.iteritems():
        globals()[k] = v
    source_dict_dim = len(open(src_dict_path, "r").readlines())
    target_dict_dim = len(open(trg_dict_path, "r").readlines())
    gen_trans_file = gen_result

    src_word_id = data_layer(name='source_language_word', size=source_dict_dim)
    src_embedding = embedding_layer(
        input=src_word_id,
        size=word_vector_dim,
W
wangjiang03 已提交
96 97
        param_attr=ParamAttr(name='_source_language_embedding'))
    src_forward = simple_gru(input=src_embedding, size=encoder_size)
98 99
    src_backward = simple_gru(
        input=src_embedding, size=encoder_size, reverse=True)
Z
zhangjinchao01 已提交
100 101 102
    encoded_vector = concat_layer(input=[src_forward, src_backward])

    with mixed_layer(size=decoder_size) as encoded_proj:
103
        encoded_proj += full_matrix_projection(input=encoded_vector)
Z
zhangjinchao01 已提交
104 105

    backward_first = first_seq(input=src_backward)
106 107 108
    with mixed_layer(
            size=decoder_size,
            act=TanhActivation(), ) as decoder_boot:
109
        decoder_boot += full_matrix_projection(input=backward_first)
Z
zhangjinchao01 已提交
110 111

    def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
112 113
        decoder_mem = memory(
            name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
Z
zhangjinchao01 已提交
114

115 116 117 118
        context = simple_attention(
            encoded_sequence=enc_vec,
            encoded_proj=enc_proj,
            decoder_state=decoder_mem, )
Z
zhangjinchao01 已提交
119 120

        with mixed_layer(size=decoder_size * 3) as decoder_inputs:
121 122
            decoder_inputs += full_matrix_projection(input=context)
            decoder_inputs += full_matrix_projection(input=current_word)
Z
zhangjinchao01 已提交
123

124 125 126 127 128
        gru_step = gru_step_layer(
            name='gru_decoder',
            input=decoder_inputs,
            output_mem=decoder_mem,
            size=decoder_size)
Z
zhangjinchao01 已提交
129

130 131 132
        with mixed_layer(
                size=target_dict_dim, bias_attr=True,
                act=SoftmaxActivation()) as out:
Z
zhangjinchao01 已提交
133 134 135 136
            out += full_matrix_projection(input=gru_step)
        return out

    decoder_group_name = "decoder_group"
137 138 139 140 141
    group_inputs = [
        StaticInput(
            input=encoded_vector, is_seq=True), StaticInput(
                input=encoded_proj, is_seq=True)
    ]
142

Z
zhangjinchao01 已提交
143 144
    if not is_generating:
        trg_embedding = embedding_layer(
145 146
            input=data_layer(
                name='target_language_word', size=target_dict_dim),
Z
zhangjinchao01 已提交
147 148
            size=word_vector_dim,
            param_attr=ParamAttr(name='_target_language_embedding'))
149
        group_inputs.append(trg_embedding)
Z
zhangjinchao01 已提交
150 151 152 153 154 155

        # For decoder equipped with attention mechanism, in training,
        # target embeding (the groudtruth) is the data input,
        # while encoded source sequence is accessed to as an unbounded memory.
        # Here, the StaticInput defines a read-only memory
        # for the recurrent_group.
156 157 158 159
        decoder = recurrent_group(
            name=decoder_group_name,
            step=gru_decoder_with_attention,
            input=group_inputs)
Z
zhangjinchao01 已提交
160

161
        lbl = data_layer(name='target_language_next_word', size=target_dict_dim)
162
        cost = classification_cost(input=decoder, label=lbl)
Z
zhangjinchao01 已提交
163 164
        outputs(cost)
    else:
165
        # In generation, the decoder predicts a next target word based on
Z
zhangjinchao01 已提交
166
        # the encoded source sequence and the last generated target word.
167

Z
zhangjinchao01 已提交
168
        # The encoded source sequence (encoder's output) must be specified by
169 170 171 172 173
        # StaticInput, which is a read-only memory.
        # Embedding of the last generated word is automatically gotten by
        # GeneratedInputs, which is initialized by a start mark, such as <s>,
        # and must be included in generation.

Z
zhangjinchao01 已提交
174 175 176 177
        trg_embedding = GeneratedInput(
            size=target_dict_dim,
            embedding_name='_target_language_embedding',
            embedding_size=word_vector_dim)
178 179
        group_inputs.append(trg_embedding)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        beam_gen = beam_search(
            name=decoder_group_name,
            step=gru_decoder_with_attention,
            input=group_inputs,
            bos_id=0,
            eos_id=1,
            beam_size=beam_size,
            max_length=max_length)

        seqtext_printer_evaluator(
            input=beam_gen,
            id_input=data_layer(
                name="sent_id", size=1),
            dict_file=trg_dict_path,
            result_file=gen_trans_file)
Z
zhangjinchao01 已提交
195
        outputs(beam_gen)